x mũ 2 =49
bài 1:
a) x mũ 3 = 4 mũ 3
b) x mũ 2 =49
c) x mũ 3 +1=28
d) 2 mũ x =16
e) 2 mũ 4 . 2 mũ x =2 mũ 6
g) 5 mũ x = 25.5 mũ 3
Lời giải:
a. $x^3=4^3\Rightarrow x=4$
b. $x^2=49=7^2=(-7)^2$
$\Rightarrow x=7$ hoặc $x=-7$
c. $x^3+1=28$
$x^3=28-1=27=3^3$
$\Rightarrow x=3$
d. $2^x=16=2^4$
$\Rightarrow x=4$
e. $2^4.2^x=2^6$
$\Rightarrow 2^{4+x}=2^6$
$\Rightarrow 4+x=6$
$\Rightarrow x=2$
g.
$5^x=25.5^3=5^2.5^3=5^5$
$\Rightarrow x=5$
Lần sau bạn lưu ý viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề được rõ ràng hơn nhé.
( x mũ 2 + 5)_* (x mũ 2 - 49) =0
(X mũ 2 +5)*(x mũ 2 - 7) bé hơn 0
\(\left(x^2+5\right)\left(x^2-49\right)=0\)
\(\left(x^2-49\right)=0\) vì \(x^2+5>0\)
\(\Rightarrow x^2=49\)
\(\Rightarrow x=\pm7\)
vậy \(x=\pm7\)
\(\left(x^2+5\right)\left(x^2-7\right)< 0\)
\(\left(x^2-7\right)< 0\)
\(\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)< 0\)
\(\hept{\begin{cases}x-\sqrt{7}>0\\x+\sqrt{7}< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-\sqrt{7}< 0\\x+\sqrt{7}>0\end{cases}}\)
\(\hept{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \sqrt{7}\\x>-\sqrt{7}\end{cases}}\)
đến đây tự làm tiếp
\(\left(x^2+5\right)\times\left(x^2-49\right)=0\)
Vậy \(\orbr{\begin{cases}x^2+5=0\\x^2-49=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-5\\x^2=49\end{cases}}\)
Mà \(x^2\ge0\Rightarrow x^2=-5\)(loại)
Vậy \(x^2=49\)
Nên \(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\left(x^2+5\right)\times\left(x^2-7\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+5< 0\\x^2-7>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+5>0\\x^2-7< 0\end{cases}}\)
TH1: \(\hept{\begin{cases}x^2+5< 0\\x^2-7>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2< -5\\x^2>7\end{cases}}\)
Mà \(x^2\ge0\Rightarrow x^2< -5\)(loại)
Vậy \(x^2>7\)
TH2: \(\hept{\begin{cases}x^2+5>0\\x^2-7< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>-5\\x^2< 7\end{cases}}\)
.....
tới đây thì tự làm nhé, mình bí khúc này
a, X mũ 2 - 24x-25
b,x mũ 2-y mũ 2+14x+49
a) x2-24x-25=x2+x-25x-25
=x(x+1)-25(x+1)
=(x-25)(x+1)
b) x2-y2+14x+49=(x2+14x+49)-y2
=(x+7)2-y2=(x-y+7)(x+y+7)
bài 49; tìm x
1, x mũ 3 + 3x mũ 2 - ( x + 3 )
2, 15x - 5 + 6x mũ 2 - 2x = 0
3, 5x - 2 - 25x mũ 2 + 10x = 0
a, \(x^3+3x^2-\left(x+3\right)=0\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\Leftrightarrow x=1;x=-1;x=-3\)
b, \(15x-5+6x^2-2x=0\Leftrightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\Leftrightarrow x=-\frac{5}{2};x=\frac{1}{3}\)
c, \(5x-2-25x^2+10x=0\)
\(\Leftrightarrow\left(5x-2\right)-5x\left(5x-2\right)=0\Leftrightarrow\left(1-5x\right)\left(5x-2\right)=0\Leftrightarrow x=\frac{2}{5};x=\frac{1}{5}\)
x . x mũ 3 . x mũ 5 . x mũ 7 . x mũ 9 .....................x mũ 49 . x mũ 51
(6x + 5y)Mũ 2
(4x-1 )Mũ 2
(x+2) Mũ 2
X Mũ 2 - 64
4x Mũ 2 - 49
25x Mũ 2 - 4
(x+1) Mũ 3
(x-3) Mũ 3
X mũ 3 +8
X mũ 3 - 125
27y Mũ 3 - 1
a) \(\left(6x-5y\right)^2=36x^2-60xy+25y^2\)
b) \(\left(4x-1\right)^2=16x^2-8x+1\)
c) \(\left(x+2\right)^2=x^2+4x+4\)
d) \(x^2-64=\left(x-8\right)\left(x+8\right)\)
e) \(4x^2-64=\left(2x-8\right)\left(2x+8\right)\)
f) \(25x^2-4=\left(5x-2\right)\left(5x+2\right)\)
g) \(\left(x+1\right)^3=x^3+3x^2+3x+1\)
h) \(\left(x-3\right)^3=x^3-9x^2+27x-27\)
k) \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
l) \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)
y) \(27y^3-1=\left(3y-1\right)\left(9y^2+3y+1\right)\)
Tìm x biết
a) | 2x + 1 | + | 5x - 1 | + 7 mũ 4 = 49
b) | x mũ 3 ( x - 4 ) = 5x mũ 2
tìm x 4x mũ 2 - 49 = 0 câu thứ 2 x mũ 2 +36 =12x câu thứ 3 10 (x-5) -8x (5-x0 =0
1. \(4x^2-49=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)
===========
2. \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)
Vậy: \(x=6\)
===========
3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)
\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)
1: Ta có: \(4x^2-49=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
2: Ta có: \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\)
hay x=6
tìm x:
a, 2 mũ x = 64
b, 7 mũ x+1 = 49 ( + 1 thẳng x)
c, ( x+ 1) mũ 5 = 32
a;2 mu x =2 mu 6 .Vậy x=6
b,7 mu x=497mu x -1x=7 mu 2 7mu x=2-1 x=1c,(x+1)mu 5=2 mu 5 x+1=2 x=2+1 x=3