Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
 nguyễn hà
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2019 lúc 5:44

\(P=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}=\frac{\left(\frac{1}{4}\right)^2}{x}+\frac{\left(\frac{1}{2}\right)^2}{y}+\frac{1^2}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{49}{16}\)

\(\Rightarrow P_{min}=\frac{49}{16}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{matrix}\right.\)

Phạm Thùy Dung
Xem chi tiết
zZz Cool Kid_new zZz
29 tháng 11 2019 lúc 18:16

Bạn tham khảo tại đây:

Câu hỏi của hoangchau - Toán lớp 9 - Học toán với OnlineMath

Hoặc

Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Nguyễn Thị Mát
29 tháng 11 2019 lúc 18:18

Áp dụng BĐT Cauchy - Schwarz ta có ;

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\frac{\left(\frac{1}{4}\right)^2}{y^2}+\frac{\left(\frac{1}{2}\right)^2}{y^2}+\frac{1}{z^2}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x^2+y^2+z^2}\)

hay \(M\ge\frac{49}{16}\)

Vậy \(M_{min}=\frac{49}{16}\)

Dấu " = " xảy ra khi \(\frac{1}{4x^2}=\frac{1}{2y^2}=\frac{1}{z^2}\)

hay 

\(x=\sqrt{\frac{1}{7}};y=\sqrt{\frac{2}{7}};z=\sqrt{\frac{4}{7}}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
24 tháng 7 2020 lúc 15:22

x(x+1)+y(y+1)+z(z+1) \(\le18\)

<=> \(x^2+y^2+z^2+\left(x+y+z\right)\le18\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow54\ge\left(x+y+z\right)^2+3\left(x+y+z\right)\)

\(\Leftrightarrow-9\le x+y+z\le6\)

\(\Rightarrow0\le x+y+z\le6\)

\(\hept{\begin{cases}\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\\\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\\\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\end{cases}}\Rightarrow B+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)

\(\Rightarrow B\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)

vậy giá trị nhỏ nhất cho B=3/5 khi x=y=z=2

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 7 2020 lúc 14:32

Hai Ngox  Xem laị  từ dòng thứ 2  và dòng thứ 3 xuống dưới. Nhiều lỗi quá!

Khách vãng lai đã xóa
Kiệt Nguyễn
27 tháng 7 2020 lúc 14:36

Cô Chi giúp em với!!!

Khách vãng lai đã xóa
HHHHH
Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
27 tháng 3 2020 lúc 15:29

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

Khách vãng lai đã xóa
Thu Nguyễn
Xem chi tiết
tth_new
12 tháng 12 2018 lúc 18:01

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

tth_new
12 tháng 12 2018 lúc 18:01

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

tth_new
12 tháng 12 2018 lúc 18:04

À mà để phải là tìm Max mới đúng chứ nhỉ?

Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:

"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1/3

Vậy A max = 3/4 khi x=y=z=1/3

Cô Gái Mùa Đông
Xem chi tiết
Ngô Văn  Nhật Minh
28 tháng 1 2021 lúc 19:38

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

Khách vãng lai đã xóa
Ngô Văn  Nhật Minh
28 tháng 1 2021 lúc 19:46

8

555566655

5665656746565656+5965=?

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
28 tháng 1 2021 lúc 19:48

Ta có: \(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\(-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) và \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) ( với a,b,c dương)

Dấu '=' xảy ra <=> a=b=c

Lại có: \(\frac{1}{x+1}\le\frac{1}{4}\left(\frac{1}{x}+1\right);\frac{1}{y+1}\le\frac{1}{4}\left(\frac{1}{y}+1\right);\frac{1}{z+1}\le\frac{1}{4}\left(\frac{1}{z}+1\right)\)

\(\Rightarrow P=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{1}{4}\left(\frac{1}{x}+1+\frac{1}{y}+1+\frac{1}{z}+1\right)\)

\(=\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\ge\frac{3}{4}\frac{9}{x+y+z}-\frac{3}{4}=\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)

Vậy GTNN của P= 3/2 <=> x=y=z=1

Khách vãng lai đã xóa
Hoàng Nguyễn
Xem chi tiết
pham trung thanh
Xem chi tiết
Despacito
13 tháng 2 2018 lúc 12:09

\(x^3+2x^2+3x+2=y^3\)

\(x^3+2x^2+3x=y^3-2\)

\(x\left(x^2+2x+3\right)=y^3-2\)

\(x=\frac{y^3-2}{x^2+2x+3}\)

đến đây tìm để \(x,y\in Z\) là xong

Pain Thiên Đạo
13 tháng 2 2018 lúc 12:21

đép ba si tồ ơi anh làm kiểu j vậy e chẳng hiểu c éo j cả :)

Phùng Minh Quân
13 tháng 2 2018 lúc 12:22

Despacito là con gái chứ anh gì :')

Nguyễn Hưng Phát
Xem chi tiết
pham trung thanh
6 tháng 7 2018 lúc 16:08

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

pham trung thanh
6 tháng 7 2018 lúc 16:09

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)