Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Gái Mùa Đông

cho các số dương x,y,z thỏa mãn x+y+z=1 .Tìm GTNN của biểu thức P=\(\frac{1}{16x}\)+\(\frac{1}{4y}\)+\(\frac{1}{z}\)

l҉o҉n҉g҉ d҉z҉
7 tháng 3 2021 lúc 19:19

\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1\div16}{16x\div16}+\frac{1\div4}{4y\div4}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\left(\frac{7}{4}\right)^2}{1}=\frac{49}{16}\)

Đẳng thức xảy ra khi \(\frac{\frac{1}{16}}{x}=\frac{\frac{1}{4}}{y}=\frac{1}{z}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\frac{1}{16}}{x}=\frac{\frac{1}{4}}{y}=\frac{1}{z}=\frac{\frac{1}{16}+\frac{1}{4}+1}{x+y+z}=\frac{21}{16}\)=> \(\hept{\begin{cases}x=\frac{1}{21}\\y=\frac{4}{21}\\z=\frac{16}{21}\end{cases}}\)

Vậy MinP = 49/16

Khách vãng lai đã xóa

Các câu hỏi tương tự
Cô Gái Mùa Đông
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết
pham trung thanh
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
Con Heo
Xem chi tiết
Lê Thị Thương
Xem chi tiết
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết