Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khang
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 1 2021 lúc 21:47

\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)

Lan_nhi
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 9:18

\(A=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{2xy}+8xy\right)+\dfrac{3}{xy}\)

\(A\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{8xy}{2xy}}+\dfrac{3}{\dfrac{1}{4}\left(x+y\right)^2}\ge20\)

\(A_{min}=20\) khi \(x=y=\dfrac{1}{2}\)

Quân Hà
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2021 lúc 0:57

Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)

Kiệt Võ
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 20:04

\(x\ge xy+1\Rightarrow1\ge y+\dfrac{1}{x}\ge2\sqrt{\dfrac{y}{x}}\Rightarrow\dfrac{y}{x}\le\dfrac{1}{4}\)

\(Q^2=\dfrac{x^2+2xy+y^2}{3x^2-xy+y^2}=\dfrac{\left(\dfrac{y}{x}\right)^2+2\left(\dfrac{y}{x}\right)+1}{\left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}+3}\)

Đặt \(\dfrac{y}{x}=t\le\dfrac{1}{4}\) 

\(Q^2=\dfrac{t^2+2t+1}{t^2-t+3}=\dfrac{t^2+2t+1}{t^2-t+3}-\dfrac{5}{9}+\dfrac{5}{9}\)

\(Q^2=\dfrac{\left(4t-1\right)\left(t+6\right)}{9\left(t^2-t+3\right)}+\dfrac{5}{9}\le\dfrac{5}{9}\)

\(\Rightarrow Q_{max}=\dfrac{\sqrt{5}}{3}\) khi \(t=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(2;\dfrac{1}{2}\right)\)

Nguyễn Thị Ngọc
Xem chi tiết
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2021 lúc 22:11

\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)

\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)

\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)

Lê Minh Đức
Xem chi tiết
Hoàng Phúc
22 tháng 5 2017 lúc 20:31

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8 

loancute
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:46

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:55

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 21:52

\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)

\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)

\(\Rightarrow x^2+y^2\ge2\)

\(\Rightarrow-\left(x^2+y^2\right)\le-2\)

\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)

\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)

\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)

\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=y=1\)