Tính S theo n ( \(n\in\) N*)
\(S=2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2+n\)
tìm số tự nhiên N thỏa mãn điều kiện
\(2.2^2+3.2^3+4.2^4+...+\left(\left(n-1\right)^2\right)^{n-1}+n.3^n=2^{n+34}\)
Tìm số tự nhiên n biết :
\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\)
Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n
<=> S = 2S - S = (2.23 + 3.24 + 4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)
S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22
= -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8
Đặt A = 23 + 24 + 25 + ... + 2n
<=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n)
<=> A = 2n + 1 - 23
Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8
= 2n - 1.(n - 1) = 2n + 34
=> n - 1 = 2n + 34 : 2n - 1
=> n - 1 = 2n + 34 - n + 1
=> n - 1 = 235
=> n = 235 + 1
Cường xo tính lại kết quả của Xyz mà cũng làm
tmf số tự nhiên n thõa mãn
\(2.2^2+3.2^{^{ }3}+...+\left(n-1\right).2^{^{ }n-1}+n.2^n=2^{n+34}\)
Bài 1: Tính Sn= 1.20+2.21+3.22+.....+n.2n-1
1) Tính giới hạn \(K=\lim\limits_{n\rightarrow\infty}\left(\dfrac{3.2^n-3^n}{2^{n+1}+3^{n+1}}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\right)\)
1:
\(K=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^{n+1}+3^{n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^n\cdot2+3^n\cdot3}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot\dfrac{2^n}{3^n}-1}{\left(\dfrac{2}{3}\right)^n\cdot2+3}\)
\(=-\dfrac{1}{3}\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\left(\dfrac{3}{4}\right)^n-4}{\left(\dfrac{3}{4}\right)^n\cdot9+1}=-\dfrac{4}{1}=-4\)
Chứng minh rằng với mọi n thuộc N* thì:
a) S(n) = 1.1! + 2.2! + 3.3! + ... + n.n! = (n+1)! -1
b) S(n) = 1.3 + 2.4 + 3.5 + ... + (n - 1) (n + 1) = \(\frac{\left(n-1\right).n.\left(2n+1\right)}{6}\)
c) S(n) = 12 + 22 + 32 + ... + n2 = \(\frac{n.\left(n+1\right)\left(2n+1\right)}{6}\)
Giải bằng phương pháp quy nạp toán học
Help plz chiều mai học rồi ạ QAQ
Thu gọn các biểu thức sau:
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)
\(=0\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)
\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)
\(=0\)
Tính tổng sau theo n (n\(\varepsilon\)N*)
S=2n-1+2.2n-3+...+(n-1).2+n
Thu gọn :
a) \(2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
b) \(\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)\)