Bài 4
Tìm số tự nhiên n thỏa mãn 2.2^2+3.2^3+4.2^4+....+n.2^n=2^n+11
tmf số tự nhiên n thõa mãn
\(2.2^2+3.2^{^{ }3}+...+\left(n-1\right).2^{^{ }n-1}+n.2^n=2^{n+34}\)
Tính S theo n ( \(n\in\) N*)
\(S=2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2+n\)
tìm số tự nhiên thỏa mãn điều kiện
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+........+n\cdot2^n=2^{n+11}\)
rút gọn : \(A=\left(\dfrac{2}{5}-\dfrac{5}{2}+\dfrac{1}{10}\right):\left(\dfrac{5}{2}-\dfrac{2}{3}+\dfrac{1}{12}\right)\)
tính:\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+......+\dfrac{1}{2017}}{\dfrac{2016}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+.......+\dfrac{1}{2016}}\)
CMR :\(5a+2b⋮13\Leftrightarrow9a+b⋮13\left(a,b\in Z\right)\)
Cho hàm số \(y=f\left(x\right)=ax^2+bx+1\)
a) Biết f(1) = 1 ; f(-1) = 3 . Tìm a,b
b) với a,b tìm được ở câu a . Chứng minh rằng với mọi số tự nhiên n,n >1 thì phân số \(\dfrac{n}{f\left(n\right)}\) tối giản
Cho hàm số y = \(\dfrac{-2}{3}x\) ; đa thức f(x) thỏa mãn điều kiện:
\(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với x\(\in R\).
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố
viết các số sau dưới dạng lũy thừa an
a) ( 4.2 )5 : \(\left(2^3.\dfrac{1}{16}\right)\)
b) \(\dfrac{2^2.4.32}{2^2.2^5}\)
1 (5 điểm)
a) Tính giá trị biểu thức: \(L=\left(-\dfrac{3}{4}+\dfrac{4}{11}\right):\dfrac{7}{11}+\left(-\dfrac{4}{7}+\dfrac{7}{11}\right):\dfrac{7}{11}\)
b) Tính giá trị nhỏ nhất của biểu thức: \(L=\left[\left(x+1\right)^2+3\right]^2+\left|y-5\right|+2008\)
2(4 điểm)
a) Tìm 3 số x;y;z thỏa mãn \(20x=15y=12z\) và \(2x^2+2y^2-3z^2=-100\)
b) Cho đa thức \(L_1\left(x\right)=x^2+2xm+m^2\) và \(L_2\left(x\right)=x^2+\left(2x+1\right)x+m^2\)
Tìm m biết \(L_1\left(1\right)=L_2\left(-1\right)\)
3(4 điểm)
a) Chứng minh \(5^{n+3}-3^{n+3}+5^{n+2}-3^{n+1}⋮60\) với mọi n thuộc N
b) Chứng minh \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2017}{4^{2017}}< \dfrac{1}{2}\)
6 điểm được free ạ =)))))
Tìm cặp số nguyên (x,y) thỏa mãn: \(\left|x+2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
Help me!