Phân tích đa thức thành nhân tử x*\(\sqrt{x}\) +1
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
phân tích đa thức thành nhân tử
\(x+2\sqrt{x-1}\) (với x≥1)
\(x-4\sqrt{x-2}+2\) ( với x ≥2)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
phân tích đa thức thành nhân tử
\(x\sqrt{x}-5\)
\(x+7\sqrt{x}+10\)
\(x+7\sqrt{x}+10=\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)\)
phân tích đa thức thành nhân tử
\(x-5\sqrt{x}+6\)
Lời giải:
$x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6$
$=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)$
$=(\sqrt{x}-2)(\sqrt{x}-3)$
\(x-5\sqrt{x}+6=\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)
phân tích đa thức thành nhân tử
\(x-6\sqrt{x}+8\)
\(x-6\sqrt{x}+8\)
\(=x-2\sqrt{x}-4\sqrt{x}+8\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)\)
b2 phân tích đa thức thành nhân tử
1) x - 9
2) x - 16
3) 9x - 1
4) x\(\sqrt{x}\)+ 1
1: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
2: \(x-16=\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)\)
3: \(9x-1=\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)\)
4: \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(1,x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\\ 2,x-16=\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)\\ 3,9x-1=\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)\\ 4,x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
1,x−9=(√x−3)(√x+3)
2,x−16=(√x−4)(√x+4)
3,9x−1=(3√x−1)(3√x+1)
4,x√x+1=(√x+1)(x−√x+1
tick nha thanksphân tích đa thức thành nhân tử
\(x\sqrt{x}-9\)
\(x-\sqrt{x}-6\)
\(2x+5\sqrt{x}-3\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
phân tích đa thức thành nhân tử : \(x-6\sqrt{x-3}+6\)
\(x-6\sqrt{x-3}+6\text{=}x-3-6\sqrt{x-3}+9\)
\(\text{=}\left(\sqrt{x-3}\right)^2-2.3.\sqrt{x-3}+\left(3\right)^2\)
\(\text{=}\left(\sqrt{x-3}-3\right)^2\)
A = \(x-6\)\(\sqrt{x-3}\) + 6 (đkxd \(x>3\))
A = (\(x\) - 3) - 2.3.\(\sqrt{x-3}\) + 9
A = (\(\sqrt{x-3}\))2 - 2.3.\(\sqrt{x-3}\) + 32
A = (\(\sqrt{x-3}\)- 3)2
Phân tích đa thức thành nhân tử x*\(\sqrt{x}\) +1
Ghi rõ các bước ạ!
\(=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)