0,a+0,b+ab,c=bc,b(a#b#c)
cho abc(ab+bc+ca)khác 0. Tính A=(x-b-c)/a+(x-c-a)/b+(x-a-b)/c=3cho abc(ab+bc+ca)khác 0. Tính A=(x-b-c)/a+(x-c-a)/b+(x-a-b)/c=3
Cho a>0 b>0 c>0 thỏa mãn a+b+c=1 tính gt bt
\(P=\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\frac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)
Bạn làm tương tự nha
\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)
Cho a>=0,b>=0,c>=0 cm
a,(a+b)/2>=√(ab)
b, a+b+c>= √(ab)+√(bc)+√(ca)
c, a+b+1/2>=√a+√b
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ
Cho a, b,c khác 0 thỏa: 1/a + 1/b+ 1/c =0, đặt P=bc-ac/ab+ac-ab/bc+ab-bc/ac , Q=bc/ac-ab+ca/ab-bc+ab/bc-ca. Tính P.Q
Cho a b = b c = c a a , b , c ≠ 0 ; a + b + c ≠ 0 và b = 2018. Tính a - c
A. 0
B. 2018
C. 1009
D. 1
CMR √a+√b+√c>=ab+bc+caa+b+c>=ab+bc+ca vs a, b, c >0
cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhua nên chọn a>0
TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)
\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
với a>0; b>0; c>0, chứng minh rằng:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\)≥ a+b+c
CẦN GẤP Ạ!
-C/m bằng phép biến đổi tương đương:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge a+b+c\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2\)
\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2-2a^2bc-2ab^2c-2abc^2\ge0\)
\(\Leftrightarrow a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)