Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Nguyễn Ngọc Linh
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Bui Huyen
20 tháng 9 2019 lúc 20:28

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

Đoàn thị Uyển Nhi
Xem chi tiết
Thắng Nguyễn
6 tháng 9 2016 lúc 23:01

a)\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a+b-2\sqrt{ab}\ge0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x

->Đpcm

2 phần kia mai tui lm nốt cho h đi ngủ

Ham học hỏi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2018 lúc 7:18

Lê Quân
Xem chi tiết
Kuroba Kaito
Xem chi tiết
Đàm Thảo Anh
Xem chi tiết
Hàn Thiên Tử
6 tháng 11 2016 lúc 23:20

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhua nên chọn a>0

TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)

\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

 

tzanh
Xem chi tiết
Trần Tuấn Hoàng
24 tháng 4 2022 lúc 14:16

-C/m bằng phép biến đổi tương đương:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge a+b+c\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b=c\)