Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị li
Xem chi tiết
Ngô Duy Phúc
Xem chi tiết
Bùi Thế Hào
16 tháng 12 2017 lúc 11:50

Ta có: 

\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)  (*)

Theo bất đẳng thức Cauchy, có: \(y+z\ge2\sqrt[]{yz}\)(1)

Và \(\frac{1}{y}+\frac{1}{z}\ge2.\frac{1}{\sqrt{yz}}=\frac{2}{\sqrt{yz}}\) (2)

Nhân (1) với (2) ta được: \(\left(y+z\right)\left(\frac{1}{y}+\frac{1}{z}\right)\ge2\sqrt{yz}.\frac{2}{\sqrt{yz}}=4\)

=> \(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) Thay vào (*) ta được:

\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x}{4}.\frac{4}{y+z}=\frac{x}{y+z}\)

=> \(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\ge\frac{x}{y+z}\left(đpcm\right)\)

Thái Thị Kim Cúc
Xem chi tiết
Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 9 2016 lúc 9:54

Có : \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2\ge2\)

Dấu " = " tại \(x=y=1\)

Vũ Anh Quân
Xem chi tiết
Lightning Farron
14 tháng 11 2016 lúc 17:43

b)áp dụng Bđt cô si

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)

\(\Rightarrow P\ge2+\left(-5\right)+5=1\)

Dấu = khi x=y

Lightning Farron
14 tháng 11 2016 lúc 17:39

a)Áp dụng Bđt Cô si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

Dấu = khi \(x=y\)

 

 

 

Ma Sói
15 tháng 2 2018 lúc 9:58

a) Ta có:

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

\(\dfrac{x^2+y^2}{xy}\ge2\)

\(x^2+y^2\ge2xy\)

\(x^2+y^2-2xy\ge0\)

\(\left(x-y\right)^2\ge0\left(lđ\right)\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 21:11

Biến đổi tương đương:

\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã được chứng minh

𝓓𝓾𝔂 𝓐𝓷𝓱
23 tháng 1 2021 lúc 21:53

Cách khác so với anh Nguyễn Việt Lâm

Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)  (đpcm)

Le vi dai
Xem chi tiết
Lê Thành An
Xem chi tiết
Ngô Duy Phúc
Xem chi tiết
Trần Hữu Ngọc Minh
14 tháng 12 2017 lúc 18:40

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)