Cho biểu thức P = \(\frac{2}{x}\) - \(\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\) . \(\frac{x+y}{x^2+xy+y^2}\) với x\(\ne\) 0, y\(\ne\) 0, x \(\ne\) -y
a. Rút gọn biểu thức P
b. Tính giá trị của biểu thức P biết x,y thỏa mãn đẳng thức x\(^2\) + y\(^2\) + 10 = 2 ( x-3y )
Giúp mình nha. Mk cần gấp lắm. Cảm ơn trc ạ !
Cho biểu thức: A=\(\left(\frac{x-y}{2y-x}+\frac{x^2+y^2+y-2}{2y^2+xy-x^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
với x>0; y>0; x\(\ne\) 2y; y\(\ne\)2-2x2
a) Rút gọn A
b) Cho y=1, tìm x để A=\(\frac{2}{5}\)
Cho biểu thức:
\(P=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\) (với x\(\ne+-\)y).Giá trị của biểu thức P khi x+y=5 và xy=\(-\frac{1}{2}\)
cho \(\frac{x}{y-z}\)+\(\frac{y}{z-x}\)+\(\frac{z}{x-y}\)= 0 , x\(\ne\)y,y\(\ne\)z,z\(\ne\)x . tính giá trị biểu thức
Q= \(\frac{x}{\left(y-z\right)^2}\)+\(\frac{y}{\left(z-x\right)^2}\)+\(\frac{z}{\left(x-y\right)^2}\)
tìm GTNN của biểu thức P=\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Mọi người ơi giúp em với ạ. Em cần trước 16h thứ 4 ngày 22/7/2020 ạ. Dùng BĐT Cosy ạ. Cảm ơn mọi người nhiều ạ
1) Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức \(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
2) Cho x,y>0 thỏa mãn \(x+y\le1\). Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
3) Cho a,b>0 thỏa mãn \(a+b\le1\).Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{b}\)
CMR bất đẳng thức sau đúng với mọi x;y là các số thực bất kì khác 0 :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Cho biểu thức P= \(\frac{2}{x}\)- (\(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\)) . \(\frac{x+y}{x^2+xy+y^2}\)với \(x\ne0;y\ne0;x\ne-y\)
a, Rút gọn biểu thức P
b, Tính giá trị của biểu thức P, biết x,y thỏa mãn đẳng thức: x^2+y^2+10= 2(x-3y)
1. Cho \(a,b\in Z;a,b\ne0;a\ne3b;a\ne-5b\). C/m giá trị A là 1 số nguyên lẻ \(A=\frac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\frac{a^2b+5ab^2}{a^2-3ab}\)
2. Cho \(x+y+z=1\)và \(x\ne-y;y\ne-z;z\ne-x\)
Tính giá trị biểu thức \(Q=\frac{xy+z}{\left(x+y\right)^2}.\frac{yz+x}{\left(y+z\right)^2}.\frac{zx+y}{\left(z+x\right)^2}\)
3. Cho \(xyz=1\).Tính \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y-\frac{1}{y}\right)\left(z-\frac{1}{z}\right)\)