Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuệ Khanh
Xem chi tiết
Châu Sa
6 tháng 10 2021 lúc 14:11

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)

\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)

Đỗ Hoàng Diệp Chi
6 tháng 10 2021 lúc 16:35

đây ko phải lớp 5 đúng ko ?

Ngyễn Thị Bảo Chi
14 tháng 7 lúc 10:22

A=21+41+81+...+5121+10241

\(= \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + . . . + \frac{1}{2^{10}}\)

\(\Rightarrow 2 � = 1 + \frac{1}{2} + \frac{1}{2^{2}} + . . . + \frac{1}{2^{9}}\)

\(\Rightarrow 2 � - � = � = 1 - \frac{1}{2^{10}}\)

Bùi Xuân Doanh
Xem chi tiết

a: Đặt \(A=\frac12-\frac14+\frac18-\frac{1}{16}+\cdots-\frac{1}{1024}\)

=>\(A=\frac12-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\cdots-\frac{1}{2^{10}}\)

=>\(2A=1-\frac12+\frac{1}{2^2}-\frac{1}{2^3}+\cdots-\frac{1}{2^9}\)

=>\(2A+A=1-\frac12+\frac{1}{2^2}-\frac{1}{2^3}+\cdots-\frac{1}{2^9}+\frac12-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\cdots-\frac{1}{2^{10}}\)

=>\(3A=1-\frac{1}{2^{10}}<1\)

=>\(A<\frac13\)

b: Đặt \(B=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

=>\(3B=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

=>\(3B+B=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{99}{3^{98}}-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\cdots+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

=>\(4B=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(A=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)

=>\(3A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)

=>\(3A+A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

=>\(4A=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)

=>\(A=\frac{-3^{99}-1}{4\cdot3^{99}}\)

Ta có: \(4B=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-3-400}{4\cdot3^{100}}=1-\frac14-\frac{403}{4\cdot3^{100}}=\frac34-\frac{403}{4\cdot3^{100}}\)

=>\(4B<\frac34\)

=>\(B<\frac{3}{16}\)

hồng lê
Xem chi tiết
Ng Bảo Ngọc
27 tháng 2 2023 lúc 19:51

Đặt A=1/2+1/4+1/8+..+1/1024

Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)

Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)

<=>A=1-1/1024

<=>A=1023/1024

Vậy biểu thức đã cho = 1023/1024

Nguyễn Tuệ Khanh
Xem chi tiết
BOT-IQ200/VN ✓
15 tháng 10 2021 lúc 21:20
Đáp án𝑠=15376
Đinh Huyền Trâm
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 8 2021 lúc 9:29

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)

\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)

\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)

ly ly
31 tháng 8 2021 lúc 9:30

Đặt ⇒2A=1+12+14+...+1128+1256⇒2A=1+12+14+...+1128+1256

⇒A=1−1512=511512

?????
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2022 lúc 12:50

\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)

=0

Ngọc Thy
30 tháng 5 2022 lúc 13:36

 

= ( 2+4+6+...+98 ) ( 6- 6) ( 1/2+1/4 + .......+ 1/ 512 ) 

= 0

Chúc bạn học tốt 

ARKFF
10 tháng 6 2024 lúc 10:00

= (2 + 4 + 6 + ... + 98) x ( 6 - 6 ) x ( \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) +...+ \(\dfrac{1}{512}\))

= (2 + 4 + 6 + ... + 98) x      0      x ( \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) +...+ \(\dfrac{1}{512}\))

=  0

*****Vì số nào nhân với 0 cũng bằng 0

Lily :3
Xem chi tiết
Nguyễn Thị Thoa
Xem chi tiết
Phong
10 tháng 11 2023 lúc 16:58

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)

\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{9}{10}\)

\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))

Vũ thị Tình
10 tháng 11 2023 lúc 17:18

132=13⋅3<12⋅3

142=14⋅4<13⋅4

...

192=19⋅9<18⋅9

1102=110⋅10<19⋅10

⇒�=122+132+142+...+1102<11⋅2+12⋅3+13⋅4+...+19⋅10

⇒�<1−12+12−13+...+19−110

⇒�<1−110

⇒�<910

⇒�<1 (vì: 910<1)

 
Nguyễn Thị Diệu Ly
Xem chi tiết
Hoàng Minh Hiếu
21 tháng 4 2021 lúc 21:53

ta có   A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40  > 1/40 + 1/40 +....+ 1/40 ( có 20 số hạng 1/40)
              = 20/40
              =1/2
      =) A> 1/2   (1)
  ta lại có  A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40 < 1/20 + 1/20 +...+ 1/20 ( có 20 số hạng 1/20)
                    =20/20
                    =1
       =) A <1 (2)
từ (1), (2) = 1/2 <A<1

Hoàng Minh Hiếu
21 tháng 4 2021 lúc 21:55

tick cho mình bn ơi

Hoàng Minh Hiếu
21 tháng 4 2021 lúc 22:10

tick cho mình bn bn hứa rùi mfa