Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hoàng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2020 lúc 17:38

Sửa đề: Cho ba số thực a,b,c dương

Áp dụng BĐT Cauchy Schwarz, ta được:

\(VT=\left(a+b+c\right)\left(\frac{9}{bc}+\frac{25}{c+a}+\frac{64}{a+b}\right)-98\ge\left(a+b+c\right)\left(\frac{256}{2\left(a+b+c\right)}\right)-98=30\)

\(\Leftrightarrow VT\ge30\)

Dấu '=' xảy ra khi \(\frac{8}{a+b}=\frac{5}{c+a}=\frac{3}{b+c}\)

\(\Leftrightarrow\frac{8}{a+b}=\frac{8}{a+b+2c}\)

hay c=0(vô lý)

=> Dấu bằng không xảy ra

=>ĐPCM

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Đăng
20 tháng 1 2021 lúc 20:59

Đặt \(\hept{\begin{cases}b+c=x>0\\c+a=y>0\\a+b=z>0\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{z+x-y}{2}\\x=\frac{x+y-z}{2}\end{cases}}\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{9\left(y+z-x\right)}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{64\left(x+y-z\right)}{2z}>30\)

Ta có: \(VP=\frac{9y}{2x}+\frac{9z}{2x}-\frac{9}{2}+\frac{25z}{2y}+\frac{25x}{2y}-\frac{9}{2}+\frac{32x}{z}+\frac{32y}{z}-32\)

\(=\left(\frac{9y}{2x}+\frac{25x}{2y}\right)+\left(\frac{9z}{2x}+\frac{32x}{z}\right)+\left(\frac{25z}{2y}+\frac{32y}{z}\right)-41\)

\(\ge2\cdot\frac{15}{2}+2\cdot12+2\cdot20-41=38>30\)

\(\Rightarrow\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\)

Khách vãng lai đã xóa
Admin (a@olm.vn)
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
nguyen phuong thao
Xem chi tiết
ta thi ngoc anh
Xem chi tiết
Diệu Huyền
18 tháng 11 2019 lúc 12:01

Violympic toán 9

Khách vãng lai đã xóa
Nguyễn Minh Đăng
Xem chi tiết
Kiệt Nguyễn
20 tháng 1 2021 lúc 21:40

Đặt \(\left(b+c,c+a,a+b\right)\rightarrow\left(x,y,z\right)\)thì \(x,y,z>0\)và \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Bất đẳng thức cần chứng minh trở thành: \(\frac{y+z-x}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{4\left(x+y-z\right)}{2z}>2\)

Xét \(VT=\left(\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}\right)+\left(\frac{25z}{2y}+\frac{25x}{2y}-\frac{25}{2}\right)+\left(\frac{2x}{z}+\frac{2y}{z}-2\right)\)\(=\left(\frac{y}{2x}+\frac{25x}{2y}\right)+\left(\frac{25z}{2y}+\frac{2y}{z}\right)+\left(\frac{z}{2x}+\frac{2x}{z}\right)-15\)\(\ge2\sqrt{\frac{y}{2x}.\frac{25x}{2y}}+2\sqrt{\frac{25z}{2y}.\frac{2y}{z}}+2\sqrt{\frac{z}{2x}.\frac{2x}{z}}-15=2\)(BĐT Cauchy)

Đẳng thức xảy ra khi \(10x=2y=5z\)hay \(10\left(b+c\right)=2\left(c+a\right)=5\left(a+b\right)\)\(\Rightarrow\hept{\begin{cases}10b+8c=2a\\5b+10c=5a\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=10b+8c\\2a=2b+4c\end{cases}}\Leftrightarrow8b+4c=0\)(Vô lí vì 8b + 4c > 0 với mọi b,c dương)

Vậy dấu bằng không xảy ra

Khách vãng lai đã xóa
hoang thi thanh mai
20 tháng 1 2021 lúc 20:15

em chao chi a

Khách vãng lai đã xóa
Đặng Xuân Vượng
20 tháng 1 2021 lúc 20:25

sao lại chào chị

Khách vãng lai đã xóa
Nguyễn Quang Nam
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 6 2020 lúc 23:22

\(VT=\frac{\left(5a+c\right)^2}{\left(b+c\right)\left(5a+c\right)}+\frac{\left(6b\right)^2}{6b\left(a+c\right)}+\frac{\left(5c+a\right)^2}{\left(a+b\right)\left(5c+a\right)}\)

\(VT\ge\frac{\left(5a+c+6b+5c+a\right)^2}{5ab+5ac+bc+c^2+6ab+6bc+5ac+5bc+a^2+ab}\)

\(VT\ge\frac{36\left(a+b+c\right)^2}{a^2+c^2+12ab+12bc+10ac}\ge\frac{36\left(a+b+c\right)^2}{a^2+c^2+a^2+b^2+b^2+c^2+10ab+10bc+10ac}\)

\(VT\ge\frac{36\left(a+b+c\right)^2}{2\left(a+b+c\right)^2+6\left(ab+bc+ca\right)}\ge\frac{36\left(a+b+c\right)^2}{2\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=9\)

Dấu "=" xảy ra khi \(a=b=c\)

TXT Channel Funfun
Xem chi tiết