Cho 3 số thực dương a, b, c. Chứng minh:
\(\frac{9a}{b+c}+\frac{25b}{a+c}+\frac{64c}{a+b}>30\)
Cho ba số thực dương:a,b,c.Chứng minh:\(\dfrac{9a}{b+c}\)+\(\dfrac{25b}{c+a}\)+\(\dfrac{64c}{a+b}\)>30
cho a;b;c là các số thực dương chứng minh: 9a/b+c +25b/a+c +64c/a+b >30
Cho a,b,c là các số thực dương. Chứng minh:
\(\frac{a}{b+c}+\frac{25b}{c+a}+\frac{4c}{a+b}>2\) (HSG Vĩnh Phúc 2020 - 2021)
Cho a, b, c là ba số dương thỏa: \(a+b+c+\sqrt{2abc}\ge10\). Chứng minh rằng:
\(\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}+\sqrt{\frac{8}{b^2}+\frac{9c^2}{2}+\frac{a^2b^2}{4}}+\sqrt{\frac{8}{c^2}+\frac{9a^2}{2}+\frac{b^2c^2}{4}}\ge6\sqrt{6}\)
cho 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3\).Chứng minh rằng
\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)
cho ba số thực dương a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) . chứng minh rằng: \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho ba số thực a, b, c khác 0 thỏa\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0.\)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
1. Cho a,b,c là ba số dương. Chứng minh rằng:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
2. Cho ba số thực dương a,b,c thoản mãn abc=1. Chứng minh rằng:
\(\frac{4a^3}{\left(1+b\right)\left(1+c\right)}+\frac{4b^3}{\left(1+c\right)\left(1+a\right)}+\frac{4c^3}{\left(1+a\right)\left(1+b\right)}\ge3\)