4x²y.(3x²y-2xy³+5)
thực hiện phép tính
a.\(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
b.\(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x\ne-y\\3x\ne y\end{matrix}\right.\)
a. \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
\(=\dfrac{x.\left(3x-y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{x.\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{2xy}{9x^2-y^2}\)
\(=\dfrac{x.\left(3x+y+3x-y\right)+2xy}{\left(3x-y\right).\left(3x+y\right)}\)
\(=\dfrac{6x^2+2xy}{\left(3x-y\right).\left(3x+y\right)}\)
\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}\)
\(=\dfrac{2x}{3x-y}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne-5\end{matrix}\right.\)
b. \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
\(=\dfrac{4x+5}{x.\left(x+5\right)}-\dfrac{3x}{x.\left(x+5\right)}\)
\(=\dfrac{x+5}{x.\left(x+5\right)}\)
\(=\dfrac{1}{x}\)
a) Ta có: \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
\(=\dfrac{x\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{3x^2-xy+3x^2+xy+2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{6x^2+2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{2x}{3x-y}\)
b) Ta có: \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
\(=\dfrac{4x+5}{x\left(x+5\right)}-\dfrac{3x}{x\left(x+5\right)}\)
\(=\dfrac{4x+5-3x}{x\left(x+5\right)}\)
\(=\dfrac{x+5}{x\left(x+5\right)}\)
\(=\dfrac{1}{x}\)
20 Rút gọn
a) (2x-y)(2x+y)-(2x+y)^2 ; b) (x-3)(x^2+3x+9)-(5-x)^2
c) (2x+y)(4x^2-2xy+y^2)-(2x+y)^3 ; d) (3x-5)^2-(3x+5)^2
\(a,\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)^2\)
\(=4x^2-y^2-4x^2-4xy+y^2\)
\(=-4xy\)
\(b,\left(x-3\right)\left(x^2+3x+9\right)-\left(5-x\right)^2\)
\(=x^3-27-25+10x-x^2\)
\(=x^3-x^2+10x-52\)
\(c,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x+y\right)^3\)
\(=8x^3+y^3-4x^2-4xy-y^2\)
\(d,\left(3x-5\right)^2-\left(3x+5\right)^2\)
\(=\left(3x-5-3x-5\right)\left(3x-5+3x+5\right)\)
\(=-10.6x=-60x\)
1.Rút gọn
a,(x+2)(x^2-2x+4)-(18+x^3)
b,(2x-y)(4x^2+2xy+y^2)-(2x+y)(4x^2-2xy+y^2)
c,(x-3)(x+3)-(x+5)(x-1)
d,(3x-2)^2+(x+1)^2+2(3x-2)(x+1)
a) ( x + 2 )( x2 - 2x + 4 ) - ( 18 + x3 )
= x3 + 8 - 18 - x3 = -10
b) ( 2x - y )( 4x2 + 2xy + y2 ) - ( 2x + y )( 4x2 - 2xy + y2 )
= 8x3 - y3 - ( 8x3 + y3 )
= 8x3 - y3 - 8x3 - y3 = -2y3
c) ( x - 3 )( x + 3 ) - ( x + 5 )( x - 1 )
= x2 - 9 - ( x2 + 4x - 5 )
= x2 - 9 - x2 - 4x + 5 = -4x - 4
d) ( 3x - 2 )2 + ( x + 1 )2 + 2( 3x - 2 )( x + 1 )
= ( 3x - 2 + x + 1 )2
= ( 4x - 1 )2
(6x^5+-3x^4y+2x^3y^2+4x^2y^3-5xy^4+2y^5):(3x^3-2xy^2+y^3)
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
Phân tích các đa thức sau thành nhân tử. . (3x+1)^2 - (3x-1)^2. (x+y)^2 - (x-y)^2. x*(y-x)^2 - x^2 + 2xy - y^2. x*(x-y)^2 - (x^2 - 2xy + y^2). Tìm x, biết: x^2 - 10x = -25. 4x^2 - 4x = -1. (x-2)^2 * (5-2x)^2 = 0. (1-2x)^2 = (3x-2)^2
bạn ghi lại đề được không vậy? đọc không hiểu gì hết :))
rút gọn biểu thức: a) (2x + y)^3 - (2x - y)^3 b) (5 - 3x)^3 - (5 + 3x)^3
c) (x +3) . (x^2 - 2x + 9) - (54 + x^3)
d) (2x + y) . (4x^2 - 2xy +y^2) - (2xy) . (4x^2 + 2xy + y^2)
Trả lời:
a, ( 2x + y )3 - ( 2x - y )3
= ( 2x )3 + 3.( 2x )2.y + 3.2x.y2 + y3 - [ ( 2x )3 - 3.( 2x )2.y + 3.2x.y2 - y3 ]
= 8x3 + 12x2y + 6xy2 + y3 - ( 8x3 - 12x2y + 6xy2 - y3 )
= 8x3 + 12x2y + 6xy2 + y3 - 8x3 + 12x2y - 6xy2 + y3
= 24x2y + 2y3
b, ( 5 - 3x )3 - ( 5 + 3x )3
= 53 - 3.52.3x + 3.5.( 3x )2 - ( 3x )3 - [ 53 + 3.52.3x + 3.5.( 3x )2 + ( 3x )3 ]
= 125 - 225x + 135x2 - 27x3 - ( 125 + 225x + 135x2 + 27x3 )
= 125 - 225x + 135x2 - 27x3 - 125 - 225x - 135x2 - 27x3
= - 54x3- 450x
c, ( x + 3 ) ( x2 - 2x + 9 ) - ( 54 + x3 )
= x3 - 2x2 + 9x + 3x2 - 6x + 27 - 54 - x3
= x2 + 3x - 27
d, ( 2x + y ) ( 4x2 - 2xy + y2 ) - 2xy ( 4x2 + 2xy + y2 )
= ( 2x )3 + y3 - 8x3y - 4x2y2 - 2xy3
= 8x3 + y3 - 8x3y - 4x2y2 - 2xy3
20 Rút gọn
a) (2x-y)(2x+y)-(2x+y)^2 ; b) (x-3)(x^2+3x+9)-(5-x)^2
c) (2x+y)(4x^2-2xy+y^2)-(2x+y)^3 ; d) (3x-5)^2-(3x+5)^2
a) (2x-y)(2x+y)-(2x+y)^2
= 4x2-y2-(4x2+4xy+y2)
= 4x2-y2-4x2-4xy-y2
= -4xy
b) (x-3)(x^2+3x+9)-(5-x)^2
= (x3-27)-(25-10x+x2)
= x3-27-25+10x-x2
= x3-x2+10x-52
c) (2x+y)(4x^2-2xy+y^2)-(2x+y)^3
= (2x)3+y3- ((2x)3+3.4x2.y+3.y2.2x+y3)
= 8x3+y3-(8x3+12x2y+6xy2+y3)
= 8x3+y3-(8x3+12x2y+6xy2+y3)
= 8x3+y3-8x3-12x2y-6xy2-y3
=-12x2y-6xy2
d) (3x-5)^2-(3x+5)^2
= (3x-5-3x-5)(3x-5+3x+5)
= -10.6x
= -60x
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)