Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Mi
Xem chi tiết
Nguyễn Hoàng Mi
23 tháng 10 2016 lúc 19:07

Chỗ 3y3 sửa lại thành 3y2 nhé!

Nguyễn Nhất Linh
Xem chi tiết
nguyễn trinh thành
19 tháng 11 2016 lúc 20:43

a) x2 -  2xy + y2  + 1 = (x-y)2 + 1 \(\ge\)1  

=> (x-y)2 +1 >0  =>  x2 - 2xy + y2  >0 

b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2\(\frac{3}{4}\)< 0   => x -  x2  - 1 <0

Huy Hoang
7 tháng 7 2020 lúc 9:51

a) Ta có:

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

.\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)

\(\Rightarrow x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)

b) Ta có :

\(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

Ta có :

\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x

\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )

Khách vãng lai đã xóa
sói nguyễn
Xem chi tiết
Nguyễn Thanh Hằng
5 tháng 11 2021 lúc 21:40

undefined

Lê Bảo Thanh
Xem chi tiết
huu phuong ho
11 tháng 7 2016 lúc 12:07
Gửi éo đc
huu phuong ho
11 tháng 7 2016 lúc 12:11

Gọi 3 STN liên tiếp là a;a+1;a+2 Ta có tổng là : a+a+1+a+2=3a+3=3(a+1) số này chia hết cho 3. Tương Tự Gọi 4 STN liên tiếp là a;a+1;a+2;a+3 Ta có: 4a+4=4(a+1) chia hết cho 4

Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 12:16

\(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1\)\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.

Nguyễn Minh Long
Xem chi tiết
Hồ Lê Thiên Đức
Xem chi tiết
Đào Tùng Dương
17 tháng 2 2022 lúc 23:45

undefined

Lee Yeong Ji
Xem chi tiết
Lê Bảo Thanh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 12:51

Ta có : \(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=n^2\left(n+1\right)^2+2n\left(n+1\right)+1\)

\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.

Bạn thêm điều kiện n là số tự nhiên nhé ^^

Thái khắc phú
Xem chi tiết