Cho hai số x, y thỏa mãn: x-4y=5. Tìm GTNN của biểu thức: \(A=x^2+4y^2\)
1,Tìm số nguyên m để C=căn(m^2+m+1) là số nguyên
2,cho hai số x,y thỏa mãn phương trình : 3x^2+4y^2-4xy-6x+4y=5.Tìm GTLN,GTNN của biểu thức M=2x+2015
cho số thực x,y thỏa mãn x^2+4y^2+8x=4xy+5 tìm GTLN cảu biểu thức B=6x+4y
Lời giải:
ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$
$\Leftrightarrow (x-2y)^2+8x=5$.
Đặt $x-2y=a; x=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$
Áp dụng BĐT AM-GM:
$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$
$\Rightarrow a^2+1\geq -2a$
$\Rightarrow a^2+8b+1\geq -2a+8b$
$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$
Cho 2 số thực x, y thỏa mãn: x^2.+4y^2=20. Tìm GTLN của biểu thức: A=|x+y|
Áp dụng Bđt Bunhiacopxki vào 2 số \(x^2+4y^2\) và \(1+\dfrac{1}{4}\) có:
\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2=A^2\Rightarrow A^2\le25\Rightarrow A\le5\)
Dấu = xảy ra \(\Leftrightarrow\dfrac{x^2}{1}=\dfrac{4y^2}{\dfrac{1}{4}}\Leftrightarrow x^2=16y^2\Rightarrow x=4,y=1\)
Cho 2 số thực x, y thỏa mãn: \(x^2+4y^2=20\). Tìm GTLN của biểu thức: A=\(\left|x+y\right|\)
\(A=\sqrt{\left(1.x+\dfrac{1}{2}.2y\right)^2}\le\sqrt{\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)}=5\)
\(A_{max}=5\) khi \(\left(x;y\right)=\left(4;1\right);\left(-4;-1\right)\)
Cho các số dương x,y thỏa mãn \(x+2y\le2\), tìm GTNN của biểu thức \(P=\frac{1}{x^2+4y^2}+\frac{1}{2xy}\)
Đặt \(2y=a\)thì ta được
\(P=\frac{1}{x^2+a^2}+\frac{1}{xa}=\left(\frac{1}{x^2+a^2}+\frac{1}{2xa}\right)+\frac{1}{2xa}\)
\(\ge\frac{4}{x^2+a^2+2ax}+\frac{2}{\left(x+a\right)^2}=\frac{6}{\left(x+a\right)^2}\ge\frac{6}{4}=\frac{3}{2}\)
Giả sử x, y là hai số dương thay đổi và thỏa mãn điều kiện x + y = \(\frac{5}{4}\). Tìm GTNN của biểu thức: S = \(\frac{4}{x}+\frac{1}{4y}\)
<=>4(x+y)=5
ta có:
\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)
\(\Rightarrow S\ge5\)
Vậy Min S=5 khi x=1;y=1/4
Cho hai số thực x, y thỏa mãn x^2 + y^2 - 2x - 4y + 6 = 1 - (x - y + 1)^2. Tính giá trị biểu thức A = 2022x + 2023y
x^2+y^2-2x-4y+6=1-(x-y+1)^2
=>x^2-2x+1+y^2-4y+4=-(x-y+1)^2
=>(x-1)^2+(y-2)^2=-(x-y+1)^2
=>(x-1)^2+(y-2)^2+(x-y+1)^2=0
=>x=1;y=2
A=2022+2023*2
=2022+4046
=6068
AM-GM p3 :)
Cho các số thực dương x,y,z thỏa mãn 2x + 4y + 7z = 2xyz
Tìm GTNN của biểu thức P = x + y + z
Cho x,y là hai số thực thỏa mãn \(x\ge1;x+y\le4\)
Tìm GTNN của A= \(x^2+3xy+4y^2\)
\(A=x^2+3xy+4y^2=\frac{7}{16}x^2+\frac{9}{16}x^2+3xy+4y^2=\frac{7}{16}x^2+\left(\frac{3}{4}x+2y\right)^2\)
\(\ge\frac{7}{16}.1^2+0^2=\frac{7}{16}\)
Dấu \(=\)khi \(\hept{\begin{cases}x=1\\\frac{3}{4}x+2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{3}{8}\end{cases}}\).