2-3*16n=2n
9n^2 + 2n-5 :3n - 2
16n^2 - 3 : 4n +1
Tham khảo:1)chứng minh rằng n^3-3n^2-n+3 chia hết cho 48 với mọi n là số tự nhiên lẻ
2)Chứng minh rằng với n thuộc N thì:
9n^3+9n^2+3n-16 ko chia hết cho 343
3)Chứng minh rằng 20^n+16^n-3^n-1 chia hết cho 323 với n tự nhiên chẵn
1)chứng minh rằng n^3-3n^2-n+3 chia hết cho 48 với mọi n là số tự nhiên lẻ.
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
2)Chứng minh rằng với n thuộc N thì:
B = 9n^3+9n^2+3n-16 ko chia hết cho 343 = 7^3
B = 9n^3+9n^2+3n-16
=> 3B = 27n^3 + 27n^2 + 9n - 48 = 27n^3 + 27n^2 + 9n +1 - 49
= (3n +1)^3 - 49
nếu: (3n+1) chia hết cho 7 => (3n+1)^3 chia hết cho 7^3 => 3B Ko chia hết cho 7^3 (dư -49)
=> B Ko chia hết cho 7^3 = 343 ( vì nếu B chia hết cho 7^3 thì 3B chia hết cho 7^3 vô lý)
3)Chứng minh rằng 20^n+16^n-3^n-1 chia hết cho 323 với n tự nhiên chẵn:
hằng đẳng thức:
a^2k - b^2k = (a+b)[(a^(2k-1) - a^(2k-2).b + ... - b^(2k-1)]
n = 2k ta có:
C = 20^n+16^n-3^n-1 = 20^2k + 16^2k - 3^2k - 1 = (20^2k - 1) + (16^2k - 3^2k)
= 19.A + 19.B
=> C chia hết cho 19
mặt khác:
C = 20^n+16^n-3^n-1 = 20^2k + 16^2k - 3^2k - 1 = (20^2k - 3^2k) + (16^2k - 1)
= 17M + 17N
=> C chia hết cho 17
=> C chia hết cho 17.19 = 323.
CMR : với mọi số tự nhiên, các phân số sau tối giản
a) A= 16n+5/6n+2
b) B= 2n+1/2n.(n+1)
c) C= 2n+3/4n+8
a: Gọi d=ƯCLN(16n+5;6n+2)
=>16n+5 và 6n+2 chia hết cho d
=>48n+15-48n-16 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>ĐPCM
1. PTĐT thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+5x+1\)
2. CMR; ∀n ∈ Z thì:
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
1.
\(a,=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\\ =\left(x-3\right)\left(x^3+5x^2-x-5\right)\\ =\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\\ =\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\\ b,=2x^4-2x^3+x^3-x^2-8x^2+8x+5x-5\\ =\left(x-1\right)\left(2x^3+x^2-8x+5\right)\\ =\left(x-1\right)\left(2x^3+5x^2-4x^2-10x+2x+5\right)\\ =\left(x-1\right)\left(2x+5\right)\left(x^2-2x+1\right)\\ =\left(x-1\right)^3\left(2x+5\right)\)
2.
\(a,=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n^2-1\right)\left(n+2\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Suy ra đpcm
Bổ sung điều kiện câu b: n chẵn và n>4
\(b,=n\left(n^3-4n^2-4n+16\right)=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]\\ =\left(n-4\right)\left(n-2\right)n\left(n+2\right)\)
Với n chẵn và \(n>4\) thì đây là tích 4 số nguyên chẵn liên tiếp nên chia hết cho \(2\cdot4\cdot6\cdot8=384\)
1.\(PTĐT\) thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+6x+1\)
2. CMR; ∀ n ∈ Z thì
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
Bài 1:
c: \(=\left(x^2+3x+1\right)^2\)
Chứng minh rằng: n4+2n3-16n2-2n+15 \(⋮\)16 với mọi n\(\in\)Z
Chứng minh rằng các số sau là các SNT cùng nhau
a) n+5 , n+6
b) 2n+3 và n+2
c) 16n+5 ,24n+7
d) 2n + 3 , 4n+8
Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)
\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\in\) N* => d = 1
=> ƯCLN(n + 5; n + 6) = 1
=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)
c) Gọi d = ƯCLN(16n + 5; 24n + 7) (d \(\in\) N*)
\(\Rightarrow\begin{cases}16n+5⋮d\\24n+7⋮d\end{cases}\)\(\Rightarrow\begin{cases}3.\left(16n+5\right)⋮d\\2.\left(24n+7\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}48n+15⋮d\\48n+14⋮d\end{cases}\)
\(\Rightarrow\left(48n+15\right)-\left(48n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà d \(\in\) N* => d = 1
=> ƯCLN(16n + 5; 24n + 7) = 1
=> 16n + 5 và 24n + 7 là 2 số nguyên tố cùng nhau (đpcm)
1) tim so nguyen x thoa man
a) -1-2-3-4 -...-x= 1275
b) -1-3-5-...- ( 2n -1) =-225
c) 16n -20n -24n-...-40n-44n =4800
1.Chứng Minh Các Số Nguyên Tố Cùng Nhau
a, 2n và 2n+1
b, 3n+4 và 4n+5
c, 12n+3 và 16n+3
2. Tìm x,y \(\in\) N,để
y.(x+3)=12
-2n và 2n+1 là 2 số tự nhiên liên tiếp, mà 2 số tự nhiên liên tiếp ko bao giờ chia hết cho nhau cả.
-
bài 1: cho n thuộc Z
a) A= n^4- 2n^3-n^2+2n chia hết cho 24
b) B= n^5-5n^3 +4n chia hết cho 120
bài 2 : cho A= n^4+4n^3-4n^2-16n ( với n chẵn)
cm A chia hết cho 2^7
Tìm số tự nhiên x thỏa mãn:
a)-1-2-3-4-...-x=1278
b)-1-3-5-...-(2n-1)=-225
c)16n-20n-24n-...-40n-44n=4800
(Nếu sai đề thì bảo tớ)
a: =>1+2+3+...+x=1278
=>x(x+1)-2556=0
\(\Leftrightarrow x^2+x-2556=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-2556\right)=10225>0\)
=>Sai đề rồi bạn vì căn bậc hai của 10225 ko phải là số nguyên
b: \(\Leftrightarrow1+3+5+...+2n-1=225\)
=>\(\dfrac{2n^2}{2}=225\)
hay n=15