Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cuong mai
Xem chi tiết
Ngoc An Pham
Xem chi tiết
mai ngoc linh
Xem chi tiết
hnamyuh
26 tháng 2 2023 lúc 22:05

Võ Thị Huyền Trâm
Xem chi tiết
Rosie
Xem chi tiết
linh
Xem chi tiết
Linh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 lúc 14:45

Ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)

Tương tự

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Vo Thi Minh Dao
Xem chi tiết
Na Bong Pé Con
Xem chi tiết
Dũng Senpai
28 tháng 6 2016 lúc 9:29

Để cho tổng 5 số bất kì là 1 số nguyên dương thì trong 21 số này chắc chắn phải có 1 số lớn hơn 0(số dương),nếu không sẽ không thỏa mãn điều kiện tổng 5 số bất kì là số nguyên dương.

Ta lấy 5 số nguyên bất kì ghép thành 1 cặp,có 21 số nên ta ghép được 4 cặp nha^^,như vậy,tổng 4 cặp này luôn là 1 số nguyên dương(theo đề bài).Còn 1 số thì ở đoạn đầu như mình đã nói,chắc chắn phải có ít nhất 1 số dương,và đó chính là số còn lại(do tổng 5 số bất kì luôn dương mà).Mà 5 số dương cộng với nhau luôn ra số dương

Vậy tổng của 21 số đó luôn luôn là một số nguyên dương

Chúc bạn học tốt^^

SKT_Rengar Thợ Săn Bóng...
28 tháng 6 2016 lúc 9:30

Do giả thiết đề bài nên trong 21 số đã cho , có tối đa 4 số nguyên ko dương => các số còn lại là dương

gọi 4 số đó là : a1 ; a; a; a4

Do giả thiết nên tồn tại sao cho S = x + a+ a2 + a3 + a4 > 0

Lấy tổng của S và 15 số dương còn lại .Dĩ nhiên tổng mới sẽ là số dược ( đpcm )