Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cíuuuuuuuuuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 13:22

a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)

\(=4x^2-20x+25-4x^2+20x\)

=25

b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)

\(=16-9x^2+9x^2+6x+1\)

=6x+17

c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)

\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)

=1

d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)

\(=\left(2021x-2020-2020x+2021\right)^2\)

\(=\left(x+1\right)^2\)

\(=x^2+2x+1\)

Hoang Phương Nguyên
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 16:51

\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)

Cíu iem
Xem chi tiết
Huỳnh Thị Thanh Ngân
7 tháng 11 2021 lúc 12:23

\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)

\(\Leftrightarrow10x-4=6\)

\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)

\(\Leftrightarrow x=1\)

\(x^2\left(x-2021\right)-x+2021=0\)

\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)

 

thương ngọc
Xem chi tiết
hưng phúc
8 tháng 10 2021 lúc 18:37

2021 - x + 2021(x - 2020x) = 0

<=> 2021 - x + 2021 - 4082420 = 0

<=> -x - 4082420 = 0

<=> x = -4082420

Nanh Bơ Nguyễn
Xem chi tiết
YunTae
28 tháng 5 2021 lúc 20:28

B

Hắc Hoàng Thiên Sữa
28 tháng 5 2021 lúc 20:29

B

 

phạm gia khánh
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 10 2020 lúc 21:20

Ta có: \(\left|x+\frac{1}{2021}\right|\ge0\) ; \(\left|x+\frac{2}{2021}\right|\ge0\) ; ... ; \(\left|x+\frac{2020}{2021}\right|\ge0\) \(\left(\forall x\right)\)

\(\Rightarrow\left|x+\frac{1}{2021}\right|+\left|x+\frac{2}{2021}\right|+...+\left|x+\frac{2020}{2021}\right|\ge0\left(\forall x\right)\)

\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)

Từ đó ta được: \(x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)

\(\Leftrightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)

\(\Leftrightarrow x=\frac{\left(2020+1\right)\left[\left(2020-1\right)\div1+1\right]}{2021}\)

\(\Leftrightarrow x=\frac{2021\cdot2020}{2021}=2020\)

Vậy x = 2020

Khách vãng lai đã xóa
Ngô Chi Lan
11 tháng 3 2021 lúc 13:35

\(\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|=2021x\)

Ta có:\(\left|\frac{x+1}{2021}\right|\ge0;\left|\frac{x+2}{2021}\right|\ge0;....;\left|\frac{x+2020}{2021}\right|\ge0\forall x\)

\(\Rightarrow\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|\ge0\forall x\)

\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\frac{x+1}{2021}+\frac{x+2}{2021}+...+\frac{x+2020}{2021}=2021x\)

\(\Rightarrow x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)

\(\Rightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)

\(\Rightarrow x=2020\)

Khách vãng lai đã xóa
Hoài Thu Vũ
Xem chi tiết
Akai Haruma
19 tháng 6 2023 lúc 18:09

Đề lỗi rồi. Bạn xem lại đề.

Vũ Thị Diệu Linh
Xem chi tiết
Vũ Thị Diệu Linh
27 tháng 7 2021 lúc 14:07

nhanh giùm mình được không

 

Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 14:37

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)