Giải pt: \(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
Giải pt sau :
1, \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
2, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
3, \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
4, \(\frac{4}{x+\sqrt{x^2+x}}-\frac{1}{x-\sqrt{x^2+x}}=\frac{3}{x}\)
5, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
a) Giải pt: \(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y}-1}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)
pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)
Áp dụng BĐT Cauchy:
\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)
\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)
\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)
\(=4+2+10=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)
giải pt
\(\sqrt{16-x^2}+x-\frac{4}{x}=4\sqrt{\frac{2}{x}-\frac{1}{x^2}}\)
giúp mik vs
Giải các pt sau bằng cách đặt ẩn phụ:
a/\(-4\sqrt{\left(4-x\right)\left(2+x\right)}=x^2-2x-12\)
b/\(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
c/\(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
d/\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}=4-2x\)
e/\(\sqrt{x+7}+\sqrt{7x-6}+\sqrt{49x^2+7x-42}=181-14x\)
f/\(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
Giải pt:
a.\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
b.\(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Làm nốt
Giải PT.
a)\(\sqrt[3]{x+4}-\sqrt[3]{x-6}=1\)
b)\(\sqrt[3]{x^2-8\sqrt[3]{x}}=20\)
c)\(\frac{x\sqrt[3]{x}-1}{\sqrt[3]{x^2-1}}-\frac{\sqrt[3]{x^2-1}}{\sqrt[3]{x}}=4\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Giải PT.
a)\(\sqrt[3]{x+4}-\sqrt[3]{x-6}=1\)
b) \(\sqrt[3]{x^2}-8\sqrt[3]{x}=20\)
c) \(\frac{x\sqrt[3]{x}-1}{\sqrt[3]{x^2}-1}-\frac{\sqrt[3]{x^2}-1}{\sqrt[3]{x}+1}=4\)
b, Đặt \(\sqrt[3]{x}=t\)
Ta có: \(\sqrt[3]{x^2}-8\sqrt[3]{x}=20\)
\(\Leftrightarrow t^2-8t=20\Leftrightarrow t^2-8t-20=0\)
\(\Leftrightarrow\left(t+2\right)\left(t-10\right)=0\)
\(\orbr{\begin{cases}t=-2\\t=10\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt[3]{x}=-2\\\sqrt[3]{x}=10\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-8\\x=1000\end{cases}}\)
giải pt
a) \(x+\sqrt{4-x^2}-3x\sqrt{4-x^2}=2\)
b) \(2\left(\sqrt{4-x^2}+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
c) \(\left(\sqrt{x^2-4}-x+1\right)\left(\sqrt{x-2}+\sqrt{x+2}\right)+2=0\)
d) \(\sqrt{x+2}-\sqrt{x-1}=\frac{6}{\sqrt{x^2+x-2}-x}\)
e) \(\frac{2}{\sqrt{x-1}+\sqrt{3-x}}=1+\sqrt{3+2x-x^2}\)
a/ ĐKXĐ: \(-2\le x\le2\)
Đặt \(x+\sqrt{4-x^2}=a\Rightarrow a^2=4+2x\sqrt{4-x^2}\Rightarrow x\sqrt{4-x^2}=\frac{a^2-4}{2}\)
\(\Rightarrow a-\frac{3\left(a^2-4\right)}{2}=2\)
\(\Leftrightarrow-3a^2+2a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{4-x^2}=2\\x+\sqrt{4-x^2}=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4-x^2}=2-x\\3\sqrt{4-x^2}=-4-3x\left(x\le-\frac{4}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x^2=x^2-4x+4\\12\left(4-x^2\right)=9x^2+24x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x=0\\21x^2+24x-32=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-12+4\sqrt{51}}{2}\left(l\right)\\x=\frac{-12-4\sqrt{51}}{2}\end{matrix}\right.\)
Mấy câu còn lại và bài kia tầm 30ph nữa sẽ làm, bận chút xíu việc
b/ ĐKXĐ: \(-2\le x\le2\)
\(\Leftrightarrow\left(2\sqrt{4-x^2}+4+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)
\(\Rightarrow\left(a^2+4\right)a-5=0\)
\(\Leftrightarrow a^3+4a-5=0\Leftrightarrow\left(a-1\right)\left(a^2+a+5\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{x+2}+\sqrt{2-x}=1\)
\(\Leftrightarrow4+2\sqrt{4-x^2}=1\Rightarrow2\sqrt{4-x^2}=-3\)
Vậy pt vô nghiệm
Thật ra bài này có thể biện luận vô nghiệm ngay từ đầu:
\(\sqrt{x+2}+\sqrt{2-x}\ge\sqrt{x+2+2-x}=2\)
\(2\left(\sqrt{4-x^2}+4\right)\ge2.4=8\)
\(\Rightarrow VT>8.2-5=11>0\) nên pt vô nghiệm
c/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left(\sqrt{x^2-4}-x+1\right)\left(\sqrt{x-2}+\sqrt{x+2}\right)=-2\)
Do \(\sqrt{x+2}>\sqrt{x-2}\Rightarrow\sqrt{x+2}-\sqrt{x-2}\ne0\)
Nhân cả 2 vế của pt với \(\sqrt{x+2}-\sqrt{x-2}\) và rút gọn ta được:
\(4\left(\sqrt{x^2-4}-x+1\right)=-2\left(\sqrt{x+2}-\sqrt{x-2}\right)\)
Đặt \(\sqrt{x+2}-\sqrt{x-2}=a>0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\Rightarrow\sqrt{x^2-4}-x=-\frac{a^2}{2}\)
Phương trình trở thành:
\(4\left(-\frac{a^2}{2}+1\right)=-2a\)
\(\Leftrightarrow-a^2+2=-a\Leftrightarrow a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+2}-\sqrt{x-2}=2\Leftrightarrow\sqrt{x+2}=2+\sqrt{x-2}\)
\(\Leftrightarrow x+2=x+2+4\sqrt{x-2}\)
\(\Rightarrow4\sqrt{x-2}=0\Rightarrow x=2\)