Cho hàm số f(x) = 10x
a) Chứng minh rằng f(a + b) = f(a) + f(b)
b) Tìm x sao cho f(x) = \(x^{2}\)
Bài 3. Cho hàm số f(x)
b) Chứng minh rằng f(a + b) = f(a) + f(b).
c) Tìm x sao cho f(x) = x2.
giải hộ mình với. mình sắp thi r huhu
Cho hàm số y=f(x)=4x^2-5
a,Tính f(3)+f(-1/2)
b,tìm f(x)để x=-1
c/chứng minh rằng mọi x thuộc R thì f(x)=f(-x)
a) Thay f(3) vào hàm số ta có :
y=f(3)=4.32-5=31
Thay f(-1/2) vào hàm số ta có :
y=f(-1/2)=4.(-1/2)2-5=-4
b) Thay x=-1 vào hàm số ta có : 4.(-1)2-5=-1
=> f(-1) với x=-1
tfyjtftftfkyh,hjgjfyhfj,fjghjgjfyfyjfjyhfjhyf,hfykfyffuyfh,jyfhjhjhfhjhhhhhcghgiufyf
T Nc cđ :
Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Bài 3: Cho hàm số f(x) = ax^2 + bx + c (a, b, c ∈ Z}). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.
Bài 4: Cho đa thức f(x) = ax^3 + bx^2 + cx + d với a là số nguyên dương và f(5) - f(4) = 2019. Chứng minh f(7) - f(2) là hợp số.
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
a) Cho hàm số y = f(x) = \(3x^2+2\). Chứng minh rằng với mọi x thì f(-x) = f(x)
b)Cho hàm số y= f(x) = \(4x^3-2x.\)Chứng minh rằng với mọi x thì f(-x) = -f(x)
a) \(y=f\left(x\right)=3\left(x^2+\frac{2}{3}\right)\)
\(f\left(-x\right)=3\left[\left(-x\right)^2+\frac{2}{3}\right]=f\left(x\right)^{\left(đpcm\right)}\)
b) Đề sai,thay x = 3 vào là thấy.
cho hàm số f(x)=\(|x-2014|-|x+2014|\)
a) Chứng minh rằng f(x)=-f(-x)
b) Tìm x để f(x) đạt GTLN? GTNN?
a/ Ta có \(f\left(-x\right)=\left|-x-2014\right|-\left|-x+2014\right|\)
Mà \(\left|-x-2014\right|\le\left|-x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)
\(\left|-x+2014\right|\le\left|-x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)
=>\(\left|-x-2014\right|-\left|-x+2014\right|\le\left(\left|-x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)
=> \(\left|-x-2014\right|-\left|-x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)
=> \(\left|-x-2014\right|-\left|-x+2014\right|\le0\)(1)
và \(f\left(x\right)=\left|x-2014\right|-\left|x+2014\right|\)
Mà \(\left|x-2014\right|\le\left|x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)
\(\left|x+2014\right|\le\left|x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)
=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(\left|x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)
=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)
=> \(\left|x-2014\right|-\left|x+2014\right|\le0\)(2)
Từ (1) và (2) => \(\left|-x-2014\right|-\left|-x+2014\right|=\left|x-2014\right|-\left|x+2014\right|\)
=> \(f\left(x\right)=f\left(-x\right)\)(đpcm)
b/ + Ta có \(\left|x-2014\right|\ge0\)với mọi giá trị của x
\(\left|x+2014\right|\ge0\)với mọi giá trị của x
=> \(\left|x-2014\right|-\left|x+2014\right|\ge0\)với mọi giá trị của x
=> GTNN của f (x) = 0.
và \(\left|x-2014\right|-\left|x+2014\right|\le0\)(cm câu a)
=> GTLN của f (x) = 0.
Cho hàm số y = f(x) = 4x2 – 9 a. Tính f(-2); f(-1/2) b. Tìm x để f(x) = -1 c. Chứng tỏ rằng với x thuộc R thì f(x) = f(-x)
Cho hàm số y=f(x)=ax
a) Tìm a biết đồ thị hàm số đã cho đi qua điểm M(-2;3)
b) Với a vừa tìm được, chứng minh rằng: f(-4)=f(4)=4f(-2
a: Thay x=-2 và y=3 vào y=ax, ta được:
-2a=3
hay a=-3/2
Cho hàm số \(f\left( x \right) = x + 1\).
a) So sánh \(f\left( 1 \right)\) và \(f\left( 2 \right)\).
b) Chứng minh rằng nếu \({x_1},{x_2} \in \mathbb{R}\) sao cho \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).