Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Vi
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:32

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Akai Haruma
8 tháng 3 2021 lúc 21:36

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

Akai Haruma
8 tháng 3 2021 lúc 21:38

Bài 3:

Áp dụng BĐT Bunhiacopxky:

$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$

$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$

$=2+a+b\leq 2+\sqrt{2}$

$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$

 

Khánh Linh
Xem chi tiết
 Mashiro Shiina
1 tháng 3 2018 lúc 23:25

Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)(1)

\(\dfrac{b^3}{b^2+1}=\dfrac{b\left(b^2+1\right)-b}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}\)(2)

\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)(3)

Cộng theo vế:

\(A\ge a+b+1-\dfrac{b}{2}-\dfrac{1}{2}-\dfrac{a}{2}=\dfrac{a+b+1}{2}\left(đpcm\right)\)

phạm thảo
Xem chi tiết
Akai Haruma
17 tháng 5 2018 lúc 14:37

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

Akai Haruma
17 tháng 5 2018 lúc 14:45

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Akai Haruma
17 tháng 5 2018 lúc 14:49

Bài 3: Đề sai.

Chien Tran Hoang
Xem chi tiết
Nguyễn Trung Kiên
Xem chi tiết
Thắng Nguyễn
20 tháng 11 2016 lúc 21:43

Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)

\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)

\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)

Cộng theo vế rồi rút gọn, ta được:

\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)

Vậy ta cần cm BĐT \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\), luôn đúng với BĐT AM-GM 3 số

Vậy BĐT được chứng minh

:vvv
Xem chi tiết
Thảo Vi
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:46

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

Akai Haruma
8 tháng 3 2021 lúc 21:49

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Akai Haruma
8 tháng 3 2021 lúc 21:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

Xinnmeii (Hân)
Xem chi tiết
zZz Cool Kid_new zZz
31 tháng 7 2020 lúc 23:10

Xài BĐT Bunhiacopski :

\(\left(b+c+c+a+a+b\right)\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

\(\ge\left(a+b+c\right)^2\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

Sử dụng Bunhiacopski đỡ phải chứng minh lại Cauchy Schwarz

Khách vãng lai đã xóa
Minh Thư
Xem chi tiết
Kiệt Nguyễn
13 tháng 12 2019 lúc 17:59

Áp dụng BĐT Bunhiacopxki:

\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(1.a+4.\frac{1}{b}\right)^2\)\(\Rightarrow a^2+\frac{1}{b^2}\ge\frac{1}{17}\left(a+\frac{4}{b}\right)^2\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{1}{\sqrt{17}}\left(a+\frac{4}{b}\right)\)

Tương tự, ta có: \(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{1}{\sqrt{17}}\left(b+\frac{4}{c}\right)\)

và \(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{1}{\sqrt{17}}\left(c+\frac{4}{a}\right)\)

Cộng từng vế của các BĐT trên, ta được:

\(P\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)\(\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)(svac - xơ)

\(=\frac{1}{\sqrt{17}}\left[\left(a+b+c\right)+\frac{9}{4\left(a+b+c\right)}+\frac{135}{4\left(a+b+c\right)}\right]\ge\frac{3\sqrt{17}}{2}\)

Vậy \(P=\sqrt{a^2+\frac{1}{b^2}}\)\(+\sqrt{b^2+\frac{1}{c^2}}\)\(+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{3\sqrt{17}}{2}\)

(Dấu "="\(\Leftrightarrow a=b=c=2\))

Khách vãng lai đã xóa
Nguyễn Linh Chi
14 tháng 12 2019 lúc 14:06

Bài em làm ok rồi nhưng mà dấu bằng xảy ra bị sai. Em kiểm tra lại!๖²⁴ʱČøøℓ ɮøү 2к⁷༉

Khách vãng lai đã xóa
Kiệt Nguyễn
14 tháng 12 2019 lúc 16:57

Vâng!!! Cảm ơn cô Nguyễn Linh Chi. Cho mk sửa

Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{2}\))

Khách vãng lai đã xóa