cho 3 số dương a,b,c thoa man: a^2+b^2+c^2=1.
cmr: a^2/(1+b-a) + b^2/(1+c-b) + c^2/(1+a-c) >=1
cho 3 số dương a,b,c thỏa mãn a^2 + b^2 + c^2 =1
CMR: a^2/(1+b-a) + b^2/(1+c-b) + c^2/(1+a-c) >=1
Cho a, b, c là các số dương thỏa: abc=1. Cmr P=1/(a^2(b+c))+1/(b^2(c+a))+1/(c^2(a+b)) ≥ 3/2
cho số thực dương a b c thoả mãn a+b+c=< 3/2 cmr a+b+c+1/a^2+1/b^2+1/c^2>=27/2
cho 3 số dương a,b,c. biết a+b+c=3. Cmr
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c dương, 0<a,b,c<1/2, thỏa a+b+c=1. CMR: a^3+b^3+c^3+2*(ab+bc+ca)<=25/32
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. CMR: \(\dfrac{1}{2+a^2b}+\dfrac{1}{2+b^2c}+\dfrac{1}{2+c^2a}\) ≥ 1
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
cho a,b,c là 3 số thực dương thoả mãn: a+b+c=3>CMR
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\)