\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}-\dfrac{1}{41}\)
Tính nhanh :
\(C=\dfrac{1}{3}+\dfrac{-3}{4}+\dfrac{3}{5}+\dfrac{1}{57}+\dfrac{-1}{36}+\dfrac{1}{15}+\dfrac{-2}{9}\)
\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)
\(E=\dfrac{-1}{2}+\dfrac{3}{5}+\dfrac{-1}{9}+\dfrac{1}{127}+\dfrac{-7}{18}+\dfrac{4}{35}+\dfrac{2}{7}\)
\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)
\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)
\(D=1+-1+\dfrac{1}{41}\)
\(D=0+\dfrac{1}{41}\)
\(D=\dfrac{1}{41}\)
\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)
=1/57
\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)
Tính
\(\dfrac{-1}{2}-\dfrac{2}{5}-\dfrac{-1}{3}.\dfrac{5}{7}-\dfrac{1}{6}+\dfrac{4}{35}-\dfrac{1}{41}\)
\(-\dfrac{1}{2}-\dfrac{2}{5}-\dfrac{-1}{2}.\dfrac{5}{7}-\dfrac{1}{6}+\dfrac{4}{35}-\dfrac{1}{41}\)
=\(-\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{5}{14}-\dfrac{1}{6}+\dfrac{4}{35}-\dfrac{1}{41}=-\dfrac{1067}{1722}\)
1 thực hiện phép tính
a,\(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{6}-\dfrac{-2}{5}\)
b,\(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)
c,\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
d,\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
Các câu dễ tự làm nha:
\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)
10 Thực hiện các phép tính sau:
a) \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}\) b) \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)
c)\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\) ;
d)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
a) \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{12}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{4}+\dfrac{-2}{5}=\dfrac{-3}{20}\)
b) \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}=\left(\dfrac{-2}{3}-\dfrac{5}{6}\right)+\left(\dfrac{-1}{5}-\dfrac{-7}{10}\right)+\dfrac{3}{4}\)
\(=\dfrac{-3}{2}+\dfrac{1}{2}-\dfrac{3}{4}\)
= \(=-1-\dfrac{3}{4}\)
\(=\dfrac{-1}{4}\)
c)\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
= \(\left(\dfrac{1}{2}-\dfrac{-1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-4}{35}+\dfrac{5}{7}-\dfrac{-2}{5}\right)+\dfrac{1}{41}\)
= \(1+1+\dfrac{1}{41}\)
= \(\dfrac{83}{41}\)
d)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
= \(\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{98}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{1}\)
= \(\dfrac{1}{100}-\dfrac{1}{1}\)
= \(\dfrac{-99}{100}\)
d đảo 1/1.2.1/2.3 ... 1/99.1000
=1/1 -1/2 +1/2-1/3 ... -1/99 - 1/1000
=1/1 -1/1000
=999/1000
Câu 1)
1) \(\dfrac{11}{24}\)−\(\dfrac{5}{41}\)+\(\dfrac{13}{24}\)+0,5−\(\dfrac{36}{41}\)=
2)12÷\(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)=
3) (\(1+\dfrac{2}{3}-\dfrac{1}{4}\))\(\left(0,8-\dfrac{3}{4}\right)^2\) =
4)\(16\dfrac{2}{7}\)÷(\(\dfrac{-3}{5}\))+\(28\dfrac{2}{7}\)÷\(\dfrac{3}{5}\)
5)\(\left(2^2\div\dfrac{4}{3}-\dfrac{1}{2}\right)\times\dfrac{6}{5}-17\)
6)\(\left(\dfrac{1}{3}\right)^{50}\times\left(-9\right)^{25}-\dfrac{2}{3}\div4\)
1: \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)
\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)-\left(\dfrac{5}{41}+\dfrac{36}{41}\right)+\dfrac{1}{2}\)
\(=1-1+\dfrac{1}{2}=\dfrac{1}{2}\)
2: \(12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=12:\left(\dfrac{9}{12}-\dfrac{10}{12}\right)^2\)
\(=12:\left(-\dfrac{1}{12}\right)^2=12:\dfrac{1}{144}=12\cdot144=1368\)
3: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(0,8-\dfrac{3}{4}\right)^2\)
\(=\dfrac{12+8-3}{12}\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{17}{12}\cdot\left(\dfrac{16-15}{20}\right)^2\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
4: \(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\dfrac{3}{5}\)
\(=\dfrac{5}{3}\cdot\left(-16-\dfrac{2}{7}\right)+\dfrac{5}{3}\cdot\left(28+\dfrac{2}{7}\right)\)
\(=\dfrac{5}{3}\left(-16-\dfrac{2}{7}+28+\dfrac{2}{7}\right)\)
\(=12\cdot\dfrac{5}{3}=20\)
5: \(\left(2^2:\dfrac{4}{3}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\dfrac{5}{2}\cdot\dfrac{6}{5}-17=3-17=-14\)
6: \(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left(\dfrac{1}{3}\right)^{50}\cdot\left(-1\right)\cdot3^{50}-\dfrac{2}{3\cdot4}\)
\(=-1-\dfrac{2}{12}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
Tính hợp lí:
A=\(\dfrac{1}{2}-\left(\dfrac{-2}{5}\right)+\dfrac{1}{3}+\dfrac{5}{7}-\left(\dfrac{-1}{6}\right)+\left(\dfrac{-4}{35}\right)+\dfrac{1}{41}\)
\(A=\dfrac{1}{2}+\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{5}{7}+\dfrac{1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+2+1}{6}+\dfrac{14+25-4}{35}+\dfrac{1}{41}\)
\(=1+\dfrac{1}{41}+1=2+\dfrac{1}{41}=\dfrac{83}{41}\)
Tính hợp lí:
A=\(\dfrac{1}{2}-\left(\dfrac{-2}{5}\right)+\dfrac{1}{3}+\dfrac{5}{7}-\left(\dfrac{-1}{6}\right)+\left(\dfrac{-4}{35}\right)+\dfrac{1}{41}\)
A=\(\dfrac{1}{2}\)-\(\left(\dfrac{-2}{5}\right)\)+\(\dfrac{1}{3}\)+\(\dfrac{5}{7}\)-\(\left(\dfrac{-1}{6}\right)\)+\(\left(\dfrac{-4}{35}\right)\)+\(\dfrac{1}{41}\)
=\(\dfrac{1}{2}\)+\(\dfrac{2}{5}\)+\(\dfrac{1}{3}\)+\(\dfrac{5}{7}\)+\(\dfrac{1}{6}\)-\(\dfrac{4}{35}\)+\(\dfrac{1}{41}\)
=\(\left[\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right]\)+\(\left[\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right]\)+\(\dfrac{1}{41}\)
= 1 + 1 +\(\dfrac{1}{41}\)
= \(\dfrac{83}{41}\)
1, \(\dfrac{-5}{7}\) . \(\dfrac{2}{11}\) + \(\dfrac{-5}{7}\) . \(\dfrac{9}{11}\) + \(1\dfrac{5}{7}\)
2,\(-3\dfrac{4}{13}\) . \(15\dfrac{3}{41}\) + \(3\dfrac{4}{13}\) . \(2\dfrac{3}{41}\)
3, \(\dfrac{4}{5}\) . \(15\dfrac{1}{4}\) - \(\dfrac{4}{5}\) . \(15\dfrac{1}{3}\) + \(\dfrac{11}{30}\)
4,\(\dfrac{4}{20}\) + \(\dfrac{16}{42}\) + \(\dfrac{6}{15}\) - \(\dfrac{3}{5}\) + \(\dfrac{2}{21}\) - \(\dfrac{10}{21}\) + \(\dfrac{3}{10}\)
Giúp mik nha. Cảm ơn
a)\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\)
b)\(\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5+\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(-6-\dfrac{7}{4}+\dfrac{3}{2}\right)\)
c)\(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(a,0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{5}{6}+\dfrac{39}{35}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\left(\dfrac{5}{6}-\dfrac{1}{6}\right)+\left(\dfrac{39}{35}-\dfrac{4}{35}\right)\\ =\dfrac{2}{3}+1\\ =\dfrac{4}{3}.\)
\(b,\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5+\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(-6-\dfrac{7}{4}+\dfrac{3}{2}\right)\\ =3-\dfrac{1}{4}+\dfrac{2}{3}-5-\dfrac{1}{3}+\dfrac{6}{5}+6+\dfrac{7}{4}-\dfrac{3}{2}\\ =\left(3-5+6\right)+\left(-\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{2}{3}-\dfrac{1}{3}\right)+\left(\dfrac{6}{5}+\dfrac{7}{4}\right)\\ =4-\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{5}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{17}{6}+\dfrac{59}{20}\\ =\dfrac{347}{60}.\)
\(c,\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\dfrac{1}{3}+\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\left(\dfrac{1}{3}-\dfrac{2}{9}\right)+\left(\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}\right)+\dfrac{1}{64}\\ =\dfrac{1}{9}+\dfrac{13}{18}+\dfrac{2}{3}+\dfrac{1}{64}\\ =\dfrac{3}{2}+\dfrac{1}{64}\\ =\dfrac{65}{64}.\)