Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Sói
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
nguyen ngoc thach
Xem chi tiết
Akai Haruma
12 tháng 1 2019 lúc 21:58

Lời giải:

Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Ta có đpcm.

Ann Nhiiên
Xem chi tiết
Sói Không Ăn Thịt
Xem chi tiết
bui hang trang
Xem chi tiết
Cỏ Ba Lá
Xem chi tiết
Ma Đức Minh
18 tháng 8 2017 lúc 14:45

trả lời gì đây bạn

Phạm Trúc Quỳnh Nhi
Xem chi tiết
ngonhuminh
17 tháng 1 2017 lúc 21:10

\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)

tran nguyen son tung
1 tháng 3 2017 lúc 16:27

ko bit

Đỗ Nam Trâm
Xem chi tiết
Nguyễn Ngọc Lộc
15 tháng 6 2021 lúc 10:40

Ta có : \(A=\left(\left(-2015\right)^{2016}.-2016^{2017}+\left(-2016\right)^{2017}.-2015^{2016}\right).\left(-2017\right)^{2018}\)

\(=\left(2015^{2016}.-2016^{2017}-2016^{2017}.-2015^{2016}\right).2017^{2018}\)

\(=\left(2015^{2016}-2015^{2016}\right).2017^{2018}.\left(-2016^{2017}\right)\)

\(=0.2017^{2018}.\left(-2016^{2017}\right)=0\)

Giải:

\(A=\left[\left(-2015\right)^{2016}.\left(-2016^{2017}\right)+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\) 

\(A=\left[2015^{2016}.\left(-2016\right)^{2017}+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\) 

\(A=\left[2015^{2016}+\left(-2015^{2016}\right)\right].\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\) 

\(A=0.\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\) 

\(A=0\)