Ta có : \(A=\left(\left(-2015\right)^{2016}.-2016^{2017}+\left(-2016\right)^{2017}.-2015^{2016}\right).\left(-2017\right)^{2018}\)
\(=\left(2015^{2016}.-2016^{2017}-2016^{2017}.-2015^{2016}\right).2017^{2018}\)
\(=\left(2015^{2016}-2015^{2016}\right).2017^{2018}.\left(-2016^{2017}\right)\)
\(=0.2017^{2018}.\left(-2016^{2017}\right)=0\)
Giải:
\(A=\left[\left(-2015\right)^{2016}.\left(-2016^{2017}\right)+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\)
\(A=\left[2015^{2016}.\left(-2016\right)^{2017}+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\)
\(A=\left[2015^{2016}+\left(-2015^{2016}\right)\right].\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\)
\(A=0.\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\)
\(A=0\)