1 3/4 cuả 82
a, Tìm giá trị nhỏ nhất cuả
A=|2x-1/3|+107
B=(3x-5)2-2015
b, tim giá trị lớn nhất cuả
C=1-|2x-3|
D=2016-(4-2x)2
a, Để A có GTNN thì |2.x-1/3| phải có GTNN
\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6
A có GTNN =107 khi x=1/6
b,(3x-5)^20 với mọi x
Để A có GTNN (3x-5)^2 phải có GTNN
\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3
B co GTNN =-2015 khi x=5/3
c,Để C có GTLN khi |2x-3| phải có GTNN
\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5
C co GTLN =1 khi x=1,5
đ,(4-2x)^2 0 với mọi x
Để D có GTLN khi (4-2x)^2 phải có GTNN
\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2
D có GTLN =2016 khi x=2
tổng cuả hai số là số bé nhất có 4 chữ số. tỉ số cuả hai số là 3|5. tìm hai số đó.
Số bé nhất có 4 chữ số là:1000
Số lớn là:1000:(3+5)x5=625
Số bé là:1000-625=375
Dễ vậy thui
Số bé nhất có 4 chữ số là : 1000
Ta có sơ đồ :
Số thứ nhất : |---|---|---|
Số thứ hai : |---|---|---|---|---|\(\hept{\begin{cases}\\\end{cases}1000}\)
Tổng số phần bằng nhau là :
3 + 5 = 8 ( phần )
Số thứ nhất là :
1000 : 8 x 3 = 375
Số thứ hai là :
1000 - 375 = 625
Đáp số : 375
625
Chúc bạn học tốt nhé !
giải pt (x+1)^4+(x-3)^4=82
tham khảo:
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
Giải phương trình: (x+1)^4+(x-3)^4=82
Lời giải:
Đặt $x-1=a$ thì $x+1=a+2$ và $x-3=a-2$
PT trở thành: $(a+2)^4+(a-2)^4=82$
$\Leftrightarrow 2a^4+48a^2+32=82$
$\Leftrightarrow a^4+24a^2-25=0$
$\Leftrightarrow (a^2-1)(a^2+25)=0$
$\Rightarrow a^2-1=0$
$\Leftrightarrow (x-1)^2-1=0$
$\Leftrightarrow (x-2)x=0\Rightarrow x=0$ hoặc $x=2$
Tính tổng S biết S=1/2+3+1/3+4+1/4+5+...+1/81+82
\(\left(x+1\right)^4\)+\(\left(x-3\right)^4\)=82
(x + 1)4 + (x - 3)4 = 82
\(\Leftrightarrow\) (x2 + 2x + 1)2 + (x2 - 6x + 9)2 = 82
\(\Leftrightarrow\) x4 + 4x2 + 1 + 4x3 + 4x + 2x2 + 4x2 + x4 + 36x2 + 81 - 12x3 - 108x + 18x2 - 82 = 0
\(\Leftrightarrow\) 2x4 - 8x3 + 60x2 - 104x = 0
\(\Leftrightarrow\) x4 - 4x3 + 30x2 - 52x = 0
\(\Leftrightarrow\) x(x3 - 4x2 + 30x - 52) = 0
\(\Leftrightarrow\) x(x3 - 2x2 - 2x2 + 4x + 26x - 52) = 0
\(\Leftrightarrow\) x[x2(x - 2) - 2x(x - 2) + 26(x - 2)] = 0
\(\Leftrightarrow\) x(x - 2)(x2 - 2x + 26) = 0
Ta có: x2 - 2x + 26 = x2 - 2x + 1 + 25 = (x - 1)2 + 25 > 0 với mọi x
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = {0; 2}
Chúc bn học tốt!
Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=82\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-6x+9\right)^2=82\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x+x^4+36x^2+81-12x^3+18x^2-108x-82=0\)
\(\Leftrightarrow2x^4-8x^3+60x^2-104x=0\)
\(\Leftrightarrow x\left(2x^3-8x^2+60x-104\right)=0\)
\(\Leftrightarrow x\left(2x^3-4x^2-4x^2+8x+52x-104\right)=0\)
\(\Leftrightarrow x\left[2x^2\left(x-2\right)-4x\left(x-2\right)+52\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(2x^2-4x+52\right)=0\)
mà \(2x^2-4x+52>0\forall x\)
nên x(x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: S={0;2}
Cho 2 số dương a,b thỏa mãn a+b=4. Tính GTNN cuả P= (1+a+1/a)3+(1+b+1/b)3
UCT nào
Ta chứng minh rằng: \(\dfrac{1}{a}+a+1\ge\dfrac{3}{4}a+2\)
Thật vậy, ta có: \(\dfrac{1}{a}+a+1=\dfrac{3}{4}a+\dfrac{1}{4}a+\dfrac{1}{a}+1\ge\dfrac{3}{4}a+2\sqrt{\dfrac{1}{4}a.\dfrac{1}{a}}+1=\dfrac{3}{4}a+2\)
\(\Rightarrow\left(\dfrac{1}{a}+a+1\right)^3\ge\left(\dfrac{3}{4}a+2\right)^3\)
Tương tự: \(\left(\dfrac{1}{b}+b+1\right)^3\ge\left(\dfrac{3}{4}b+2\right)^3\)
Cộng vế theo vế, áp dụng AM-GMta được:
\(P\ge\left(\dfrac{3}{4}a+2\right)^3+\left(\dfrac{3}{4}b+2\right)^3=\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)-3\left(\dfrac{3}{4}a+2\right)\left(\dfrac{3}{4}b+2\right)\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)\)
\(P\ge\left[\dfrac{3}{4}\left(a+b\right)+4\right]^3-3.\dfrac{\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)^2}{4}.\left[\dfrac{3}{4}\left(a+b\right)+4\right]=85,75\)
GTNN của P là 85,75 khi a=b=2
1, -1/7- 1/8
2, 15/48- 5/12
3, -3/15- (-3/25 )
4, 1/15- 3/5
1. \(\dfrac{-1}{7}-\dfrac{1}{8}=\dfrac{-8-7}{56}=\dfrac{-15}{56}.\)
2. \(\dfrac{15}{48}-\dfrac{5}{12}=\dfrac{5}{16}-\dfrac{5}{12}=-\dfrac{5}{48}.\)
3. \(\dfrac{-3}{15}-\left(\dfrac{-3}{25}\right)=\dfrac{-1}{5}+\dfrac{3}{25}=\dfrac{-2}{25}.\)
4. \(\dfrac{1}{15}-\dfrac{3}{5}=\dfrac{1-9}{15}=-\dfrac{8}{15}.\)
1, -1/7- 1/8
2, 15/48- 5/12
3, -3/15- (-3/25 )
4, 1/15- 3/5
1. \(\dfrac{-1}{7}-\dfrac{1}{8}=\dfrac{-8-7}{56}=-\dfrac{15}{56}.\)
2. \(\dfrac{15}{48}-\dfrac{5}{12}=\dfrac{5}{16}-\dfrac{5}{12}=-\dfrac{5}{48}.\)
3. \(\dfrac{-3}{15}-\left(-\dfrac{3}{25}\right)=\dfrac{-1}{5}+\dfrac{3}{25}=-\dfrac{2}{25}.\)
4. \(\dfrac{1}{15}-\dfrac{3}{5}=\dfrac{1-9}{15}=-\dfrac{8}{15}.\)