(x + 1)4 + (x - 3)4 = 82
\(\Leftrightarrow\) (x2 + 2x + 1)2 + (x2 - 6x + 9)2 = 82
\(\Leftrightarrow\) x4 + 4x2 + 1 + 4x3 + 4x + 2x2 + 4x2 + x4 + 36x2 + 81 - 12x3 - 108x + 18x2 - 82 = 0
\(\Leftrightarrow\) 2x4 - 8x3 + 60x2 - 104x = 0
\(\Leftrightarrow\) x4 - 4x3 + 30x2 - 52x = 0
\(\Leftrightarrow\) x(x3 - 4x2 + 30x - 52) = 0
\(\Leftrightarrow\) x(x3 - 2x2 - 2x2 + 4x + 26x - 52) = 0
\(\Leftrightarrow\) x[x2(x - 2) - 2x(x - 2) + 26(x - 2)] = 0
\(\Leftrightarrow\) x(x - 2)(x2 - 2x + 26) = 0
Ta có: x2 - 2x + 26 = x2 - 2x + 1 + 25 = (x - 1)2 + 25 > 0 với mọi x
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = {0; 2}
Chúc bn học tốt!
Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=82\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-6x+9\right)^2=82\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x+x^4+36x^2+81-12x^3+18x^2-108x-82=0\)
\(\Leftrightarrow2x^4-8x^3+60x^2-104x=0\)
\(\Leftrightarrow x\left(2x^3-8x^2+60x-104\right)=0\)
\(\Leftrightarrow x\left(2x^3-4x^2-4x^2+8x+52x-104\right)=0\)
\(\Leftrightarrow x\left[2x^2\left(x-2\right)-4x\left(x-2\right)+52\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(2x^2-4x+52\right)=0\)
mà \(2x^2-4x+52>0\forall x\)
nên x(x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: S={0;2}