Cho ABCD là hình chữ nhật có O là giao điểm hai đường chéo AC và BD khi đó. A. AC > BD
Cho hình thoi ABCD có O là giao điểm hai đường chéo. Biết AB = 58 cm và AC : BD = 1,05. Khi đó AC = ? cm
Vì : \(\frac{AC}{BD}=1,05\)
\(\Rightarrow\frac{\frac{1}{2}AC}{\frac{1}{2}BD}=1,05\)
\(\Rightarrow\frac{AO}{BO}=1,05\)
\(\Rightarrow AO=1,05.BO\)
Xét \(\Delta AOB\) vuông tại O ( vì O là giao điểm 2 đường chéo của hình thoi )
\(AO^2+BO^2=AB^2\) ( định lí Py ta go )
\(\left(1,05.BO\right)^2+BO^2=58^2\)
\(2,1025BO^2=3364\)
\(\Rightarrow BO^2=1600\)
\(\Rightarrow BO=40\) ( vì \(BO>0\) )
\(\Rightarrow AC=\left(BO.1,05\right).1=84\left(cm\right)\)
Vậy ..............
Cho hình chữ nhật ABCD có AB = 6cm, AC = 10cm. Gọi O là giao điểm hai đường chéo AC và BD và M, N, P, Q lần lượt là trung điểm của OA, OB, OC, OD.
a) Tính S M N P Q
b) Chứng minh rằng: S A M N B = S C P Q D
a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà AB // CD và AB = CD nên MN // PQ và MN = PQ
⇒ Tứ giác MNPQ là hình bình hành.
Tương tự NP // BC mà AB ⊥ BC nên MN ⊥ NP. Do đó MNPQ là hình chữ nhật.
Trong ΔABC ta có
Vậy SMNPQ = MN.PQ = 3.4 = 12 (cm2).
b)Dễ thấy ΔAOB = ΔCOD (c.c.c).
Tương tự ΔMON = ΔPOQ
Do đó: SAOB = SCOD và SMON = SPOQ.
⇒ SAOB - SMON = SCOD - SPOQ hay SAMNB = SCPQD.
Cho tứ giác ABCD có O là giao điểm hai đường chéo AC và BD, hỏi nếu AC=BD thì tứ giác ABCD là hình gì ?
Tứ giác ABCD là một hình vuông.
Cho hình thoi ABCD cạnh a có BAD=60 độ. Gọi O là giao điểm của hai đường chéo AC và BD. Gọi O là giao điểm hai đường chéo AC và BD. Gọi G là trọng tâm tam giác ABD, E là điểm đối xứng của O qua D, H là giao điểm AD và GE. Tính độ dài vector AH
Bài 16: Hình chữ nhật ABCD có AB = 8cm, AD = 6cm. Gọi O là giao điểm của hai đường chéo AC và BD. Tính độ dài đoạn thẳng OA
Bài 16: Hình chữ nhật ABCD có AB = 8cm, AD = 6cm. Gọi O là giao điểm của hai đường chéo AC và BD. Tính độ dài đoạn thẳng OA.
Cho hình thoi ABCD có O là giao điểm hai đường chéo. Biết AB = 58 cm và AC : BD = 1,05. Khi đó AC = ? cm
( có cách giải chi tiết càng tốt nha )
Vì \(\frac{AC}{BD}=1,05\)
\(\Rightarrow\frac{\frac{1}{2}AC}{\frac{1}{2}BD}=1,05\)
\(\Rightarrow\frac{AO}{BO}=1,05\)
\(\Rightarrow AO=1,05.BO\)
Xét \(\Delta AOB\)vuông tại O ( vì O là giao điểm 2 đường chéo hình thoi ) có :
\(AO^2+BO^2=AB^2\)( Định lý Pytago )
\(\left(1,05.BO\right)^2+BO^2=58^2\)
\(2,1025BO^2=3364\)
\(\Rightarrow BO^2=1600\)
\(\Rightarrow BO=40\) \(\left(BO>0\right)\)
\(\Rightarrow AC=\left(BO.1,05\right).2=84\)(cm)
Vậy ...
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo và AB = a, BC = 3a.
a) Tính độ dài các vectơ \(\overrightarrow {AC} ,\overrightarrow {BD} \)
b) Tìm trong hình ảnh vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\)
a) Ta có:
\(AC = BD = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {3a} \right)}^2}} = a\sqrt {10} \)
+) \(\left| {\overrightarrow {AC} } \right| = AC = a\sqrt {10} \)
+) \(\left| {\overrightarrow {BD} } \right| = BD = a\sqrt {10} \)
b) O là giao điểm của hai đường chéo nên ta có:
\(AO = OC = BO = OD = \frac{{a\sqrt {10} }}{2}\)
Dựa vào hình vẽ ta thấy AO và CO cùng nằm trên một đường thẳng; BO và DO cùng nằm trên một đường thẳng
Suy ra các cặp vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\) là:
\(\overrightarrow {OA} \) và \(\overrightarrow {OC} \); \(\overrightarrow {AO} \) và \(\overrightarrow {CO} \); \(\overrightarrow {OB} \) và \(\overrightarrow {OD} \); \(\overrightarrow {BO} \) và \(\overrightarrow {DO} \)
Cho hình thoi ABCD , O là giao điểm của hai đường chéo qua B kẻ đường thẳng song song AC qua C kẻ đường thẳng song song BD hai đường thẳng đó cắt nhau ở K. a Chứng minh tứ giác OBKC là hình chữ nhật .b biết AC = 8 cm BC = 6 cm Tính OK.c Chứng minh AB = OK. d tìm điều kiện hình thoi ABCD để tứ giác OBKC là hình vuông