Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hằng
Xem chi tiết
Hoàng Phúc
12 tháng 2 2016 lúc 21:37

y=5x5+10x4

=>y=5x4.x+5.2.x4

=>5x4(x+2)=y=0

\(\Rightarrow\int^{5x^4=0}_{x+2=0}\Rightarrow\int^{x=0}_{x=-2}\Rightarrow x\in\left\{-2;0\right\}\)

Nguyễn Đỗ Nhã Uyên
Xem chi tiết
nguyen van nam
1 tháng 3 2016 lúc 19:05

=> y = x4( 5x + 10 ) => x4 = 0 hoặc 5x + 10 = 0

x4 = 0 thì x = 0

5x + 10 = 0 thì x = -2

Vậy tập hợp đó là { -2 ; 0 }

Nguyễn Dương
Xem chi tiết
Bình Trần Thị
Xem chi tiết

a: \(y=-x^2+2x+3\)

y>0

=>\(-x^2+2x+3>0\)

=>\(x^2-2x-3< 0\)

=>(x-3)(x+1)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)

=>-1<x<3

\(y=\dfrac{1}{2}x^2+x+4\)

y>0

=>\(\dfrac{1}{2}x^2+x+4>0\)

\(\Leftrightarrow x^2+2x+8>0\)

=>\(x^2+2x+1+7>0\)

=>\(\left(x+1\right)^2+7>0\)(luôn đúng)

b: \(y=-x^2+2x+3< 0\)

=>\(x^2-2x-3>0\)

=>(x-3)(x+1)>0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)

=>x<-1

\(y=\dfrac{1}{2}x^2+x+4\)

\(y< 0\)

=>\(\dfrac{1}{2}x^2+x+4< 0\)

=>\(x^2+2x+8< 0\)

=>(x+1)2+7<0(vô lý)

Bùi Phương Thảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2019 lúc 10:27


Phương Thảo Lâm Ngọc
Xem chi tiết
linh phạm
15 tháng 12 2021 lúc 22:05
x-5-4-3-201/5
y-26-21-16-11-10

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2018 lúc 14:10

títtt
Xem chi tiết
Nguyễn Đức Trí
17 tháng 9 2023 lúc 22:16

1) \(y=\dfrac{2x^2+1}{x^2}\)

\(\Rightarrow y'=\dfrac{\left(4x+1\right)x^2-2x\left(2x^2+1\right)}{x^4}\)

\(\Leftrightarrow y'=\dfrac{4x^3+x^2-4x^3-2x}{x^4}\)

\(\Leftrightarrow y'=\dfrac{x^2-2x}{x^4}=\dfrac{x\left(x-2\right)}{x^4}=\dfrac{x-2}{x^3}\)

2) \(f\left(x\right)=\sqrt[]{-5x^2+14x-9}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-10x+14}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-2\left(5x-7\right)}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}\)

Để \(f'\left(x\right)=0\)

\(f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}=0\)

\(\Leftrightarrow5x-7=0\)

\(\Leftrightarrow5x=7\)

\(\Leftrightarrow x=\dfrac{7}{5}\)

Vậy tập hợp giá trị để \(f'\left(x\right)=0\) là \(\left\{\dfrac{7}{5}\right\}\)