\(2\sqrt{a}-a\sqrt{\dfrac{4}{a}}\)
Rút gọn với x > 0
Mn giúp e vs ạ ê đang cần gấp
1) rút gọn và tìm A để A nguyên
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
giúp mk vs ạ mk cần gấp
\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(đk:a>0,a\ne1\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+2}=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}}\)
Để A nguyên
\(\Leftrightarrow A=\dfrac{\sqrt{a}-2}{\sqrt{a}}=1-\dfrac{2}{\sqrt{a}}\in Z\)
Do \(\sqrt{a}>0,\sqrt{a}\ne1\)
\(\Leftrightarrow\sqrt{a}\inƯ\left(2\right)=\left\{2\right\}\)
\(\Leftrightarrow a=4\)
1) rút gọn
A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
B= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
C= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
Giúp mk vs ạ mk cần gấp
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)
\(=\dfrac{3}{2}\)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
\(B=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}=\dfrac{6}{4}=\dfrac{3}{2}\)
\(C=\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(C=2-\sqrt{3}+3+\sqrt{3}=5\)
cho bt: P=\(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\dfrac{1}{a\sqrt{a}}\) với a>0; a\(\ne\)1
a, rút gọn P
b, tính giá trị tại a=\(\sqrt{9+4\sqrt{2}}\)
giải với ạ e cần gấp!
a: \(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{a-1}\cdot\dfrac{1}{a\sqrt{a}}\)
\(=\dfrac{4\sqrt{a}\left(a-1+1\right)}{a-1}\cdot\dfrac{1}{a\sqrt{a}}=\dfrac{4}{a-1}\)
b: Khi a=2căn 2+1 thì \(A=\dfrac{4}{2\sqrt{2}+1-1}=\sqrt{2}\)
Giải giúp mình vs ạ ,mik cần gấp
Cho bt:\(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
a)tìm điều kiện xác định để bt A có nghĩa
b)rút gọn A
c)so sánh |A| với A
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
a) Rút gọn P= \(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\) với x>0; x ≠ 1
b) Tìm giá trị lớn nhất của P với 0<x≤3
giúp mik với ạ, mik đang cần gấp :((((((((
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Cho bt: P=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}.\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a, Rút gọn P
b, P khi x = 6-2\(\sqrt{5}\)
giải hộ e với e đang cần gấp để đối chiếu kết quả!
a: \(=\dfrac{x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{-5\sqrt{x}-5+x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-3\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
b: khi x=6-2căn 5 thì \(P=\dfrac{6-2\sqrt{5}-3\sqrt{5}+3-5}{\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)\cdot\sqrt{5}}\)
\(=\dfrac{-5\sqrt{5}+4}{\sqrt{5}\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)}\)
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
làm ơn giúp mình với ạ!!mình đang cần gấp vào tối nay ạ!!
\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
ĐK : a >= 0 , a khác 1
\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)
có ai bt lm bài này k giúp mk vs mk đg cần rất rất gấp mong các bn giúp cho
VD3: cho biểu thức
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
a, rút gọn P
b, tính giá trị P biết : x=7+4\(\sqrt{3}\)
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik
a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{x-4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b: Thay \(x=7+4\sqrt{3}\) vào P, ta được:
\(P=\dfrac{2+\sqrt{3}+2}{\sqrt{3}\left(2+\sqrt{3}\right)}=\dfrac{-6+5\sqrt{3}}{3}\)
Cho P=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tìm GTNN
Lm nhanh giúp mk nhé!Mk đang cần gấp!