giải và biện luận phương trình:
\(\left(x-m\right)\sqrt{x-1}=x^2-m^2\)
câu 1: Giải và biện luận hệ phương trình:\(\hept{\begin{cases}2\left(m-1\right)\cdot x+y=2\\\left(m+2\right)\cdot x+\left(m-1\right)\cdot y=3\end{cases}}\)
câu 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\x+z=\sqrt{4y-1}\end{cases}}\)
Giải và biện luận phương trình \(\left(x^2-3x+2\right)\sqrt{x-m}=0\)
Cho phương trình \(mx^2-2\left(m-1\right)x+m-3=0\)
Giải và biện luận phương trình trên.
Với \(m=0\)
\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)
PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)
Giải và biện luận phương trình theo tham số m:
\(\left(x-1\right)m^2-\left(5x-1\right)m+2\left(3x+1\right)=0\)
\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)
Với \(m\ne2;m\ne3\)
\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)
Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)
Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)
Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
Giải và biện luận các phương trình sau:
a) \(\left(m^2-m-6\right)x=m^2-4x+3\)
b) \(\left|m^2x-1\right|=\left|x+m\right|\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình có vô số nghiệm thì \(m-3=0\)
hay m=3
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Giải và biện luận các phương trình sau:
a) \(\left(m^2-m-6\right)x=m^2-4x+3\)
b) \(\left|m^2x-1\right|=\left|x+m\right|\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP, GIẢI CHI TIẾT GIÚP MÌNH, MÌNH CẢM ƠN
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Để phương trình có vô số nghiệm thì m=3
Giải và biện luận phương trình ẩn x và tham số m :
\(\left|x+m\right|=2+\left|x-m\right|\)
\(\left|x+m\right|=2+\left|x-m\right|\) ( Hai vế đều dương nên bình phương hai vế không cần điều kiện)
\(\Leftrightarrow x^2+2mx+m^2=4+4\left|x-m\right|+x^2-2mx+m^2\)
\(\Leftrightarrow4mx=4+4\left|x-m\right|\)
\(\Leftrightarrow mx=1+\left|x-m\right|\)
\(\Leftrightarrow mx-1=\left|x-m\right|\) (1) Điều kiện: \(mx-1\ge0\) (*)
Với: \(mx-1\ge0\)
\(\left(1\right)\Leftrightarrow m^2x^2-2mx+1=x^2-2mx+m^2\)
\(\Leftrightarrow m^2x^2+1=x^2+m^2\)
\(\Leftrightarrow\left(m^2-1\right)x^2=m^2-1\) (2)
TH1: \(\left(m^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
+ Với \(m=1\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge1\\\left(2\right)\Leftrightarrow0=0\left(\text{luôn đúng với mọi x}\right)\end{cases}}\Leftrightarrow x\ge0\)
+ Với \(m=-1\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le-1\\\left(2\right)\Leftrightarrow0=0\left(\text{luôn đúng với mọi x }\right)\end{cases}\Leftrightarrow}x\le-1\)
TH2: Với \(m=0\) thì \(\left(\text{*}\right)\Leftrightarrow0-1\ge0\) ( vô lý ) => vô nghiệm
TH3: \(\left(m^2-1\right)\ne0\Leftrightarrow\orbr{\begin{cases}m\ne1\\m\ne-1\end{cases}}\)
+ Với: \(\hept{\begin{cases}m< 0\\m\ne-1\end{cases}}\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le\frac{1}{m}\\\left(2\right)\Leftrightarrow x^2=\frac{m^2-1}{m^2-1}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le\frac{1}{m}< 0\\x=\text{1 hoặc -1}\end{cases}}\Leftrightarrow x=-1\)
+ Với: \(\hept{\begin{cases}m>0\\m\ne1\end{cases}}\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge\frac{1}{m}\\\left(2\right)\Leftrightarrow x^2=\frac{m^2-1}{m^2-1}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge\frac{1}{m}>0\\\left(2\right)\Leftrightarrow x^2=\text{1 hoặc -1}\end{cases}}\Leftrightarrow x=1\)
Tự kết luận nhé
\(\left|x+m\right|=2+\left|x-m\right|\)
\(\Leftrightarrow\left(\left|x+m\right|\right)^2=\left(2+\left|x-m\right|\right)^2\)
\(\Leftrightarrow x^2+2mx+m^2=m^2-2mx-4m+x^2+4x+4\)
\(\Leftrightarrow4mx+4m-4x-4=0\)
\(\Leftrightarrow4\left(m-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(x+1\right)=0\)
.....
You phạm một sai lầm trầm trọng , chú ý đoạn này :
\(\left(2+\left|x-m\right|\right)^2=\left(x-m\right)^2+4\left|x-m\right|+4\)
giải và biện luận phương trình:
\(2\left(x-10\right)+\left(m+1\right)^2< m-mx\)