cho hàm số y =(m-2)x. tìm m và vẽ đồ thị hàm số. biết đồ thị hàm sô đi qua điiểm m (55 ; 110)
Cho hàm số y = (2m + 5)x - 1 a) Tìm m biết đồ thị hàm số đi qua điểm A(- 2; 3) . b) Vẽ đồ thị hàm số với m tìm được ở câu a. c) Tìm m biết đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
Lời giải:
a. Vì đths đi qua $A(-2;3)$ nên:
$y_A=(2m+5)x_A-1$
$\Rightarrow 3=(2m+5)(-2)-1\Rightarrow m=\frac{-7}{2}$
b. ĐTHS sau khi tìm được $m$ có pt: $y=-2x-1$. Bạn có thể tự vẽ
c. ĐTHS cắt trục hoành tại điểm có hoành độ -3, tức là đi qua điểm $(-3,0)$
$\Rightarrow 0=(2m+5)(-3)-1$
$\Rightarrow m=\frac{-8}{3}$
Cho hàm số y=mx-3
A, vẽ đồ thị hàm số khi m=1
B, tìm hàm số m . biết đồ thị đi qua M(3;6)
Lời giải:
a. Khi $m=1$ thì hàm số là: $y=x-3$
ĐTHS được minh họa dưới đây:
b. Để đths đi qua $M(3;6)$ thì:
$y_M=mx_M-3$
$\Leftrightarrow 6=3m-3$
$\Leftrightarrow 9=3m$
$\Leftrightarrow m=3$
Cho hàm số y=(2m-4)x + m - 1
a)Tìm m để hàm số đồng biến
b)Tìm m biết đồ thị hàm số trên đi qua A(2;3)
c)Vẽ đồ thị hàm số khi m=3
Em ơi hình như ảnh bị lỗi ấy!
\(a,HS\text{Đ}B\Leftrightarrow a>0\\ \Leftrightarrow2m-4>0\\ \Leftrightarrow m>2\\ b,Thay:x_A=2;y_A=3.v\text{à}oHS:\\ y_A=\left(2m-4\right).x_A+m-1\\ \Leftrightarrow3=\left(2m-4\right).2+m-1\\ \Leftrightarrow5m=12\\ \Leftrightarrow m=\dfrac{12}{5}\\ c,m=3\Rightarrow y=\left(2.3-4\right)x+3-1=2x+2\)
Em tự vẽ đồ thi cho pt y=2x+2 nha!
Cho hàm số \(y=mx+m-6\left(m\ne0\right)\left(1\right)\).
1) Xác định m biết đồ thị hàm số (1) đi qua điểm M(2; 3). Vẽ đồ thị hàm số (1) với m vừa tìm được.
2) Tìm m để đồ thị hàm số (1) song song với đường thẳng \(y=3x+2\)
3) Chứng minh rằng đồ thị hàm số (1) luôn đi qua một điểm cố định với mọi giá trị của tham số m
1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:
\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)
2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)
3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).
Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)
Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).
Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).
Cho hàm số y = f(x) = (m+1)x – 2 có đồ thị là (d)
a. Tìm m biết rằng đồ thị (d) của hàm số đi qua A(-2:0)
b. Nêu tính chất và vẽ đồ thị hàm số với m tìm được ở câu a .
c. Không tính hãy so sánh f(2√3) và f(3√2)
d. Viết phương trình đường thẳng đi qua B(-1;1)và vuông góc với (d) nói trên
Cho hàm số y = (m − 2)x + m
a) Tìm điều kiện của m để hàm số nghịch biến.
b) Vẽ đồ thị hàm số khi m = 1.
c) Tìm m để đồ thị hàm số đi qua điểm B(1; 2).
a: Để hàm số nghịch biến thì m-2<0
hay m<2
c: Thay x=1 và y=2 vào (d), ta được:
m-2+m=2
hay m=2
Cho hàm số y = ax². Tìm a biết đồ thị hàm số đi qua điểm M(–2; 8). Vẽ đồ thị hàm số với a vừa tìm được.
Gọi hàm số \(y=ax^2\) là \(\left(d\right)\).
Ta có: \(\left(d\right)\in M\left(-2;8\right)\Rightarrow8=\left(-2\right)^2\cdot a\)
\(\Rightarrow a=2\)
cho hàm số y=ax2.Tìm a biết đồ thị hàm số đi qua điểm M(–2; 8). Vẽ đồ thị hàm số với a vừa tìm được.
Thay x=-2 và y=8 vào y=ax2, ta được:
4a=8
hay a=2
Cho hàm số y=(1-2m)x+3 a) tìm m biết đồ thị hàm số đi qua điểm A(1;0) b) tìm m biết đồ thị hàm số đi qua điểm B(2;-4) c) tìm toạ độ giao điểm của 2 đồ thị hàm số ở câu a,b
a: Thay x=1 và y=0 vào (d), ta được:
1-2m+3=0
\(\Leftrightarrow m=2\)