GPT: \(\log_3\left(\sqrt{x^2-3x+2}+2\right)+5^{x^2-3x+1}=2\)
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
Đặt \(\sqrt{x^2-5x+5}=t>0\)
\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất của pt
\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
gpt: \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
\(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
\(\left(\sqrt{x+1}-1\right)\left(\sqrt{x^2-4x+7}+1\right)=x\)
gpt : \(x^2-4x+5-\frac{3x}{x^2+x+1}=\left(x-1\right)\left(1-\frac{2\sqrt{1-x}}{\sqrt{x^2+x+1}}\right)\)
gpt \(1+3x=\left(x-x^2\right)\left(5+\sqrt{15+6x-9x^2}\right)\)
gpt : a. \(x^2-7x=6\sqrt{x+5}-30\)
b. \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x-4}\)
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
Mọi người ởi giả hộ em bài này đi:
1. Gpt:
a. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
b. \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
c. \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT
a) \(\sqrt[3]{x^4+X^2}+2\sqrt[5]{X^5+X^2+2}=\sqrt[3]{X^4+3X-2}+2\sqrt[5]{X^5+3X}\)
b) \(4\sqrt{x+1}+2\sqrt{2x+3}=\left(x-1\right)\left(x^2-2\right)\)
các bạn giải giúp mik với. mình đang cần gấp
Gpt: \(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\)
\(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\) (ĐKXĐ : \(x>-\frac{1}{3}\) )
\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\sqrt{x^2+1}-\left(3x+1\right)\)
\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\left(\sqrt{x^2+1}-1\right)\)
\(\Leftrightarrow x\left(3x-2\right)=\left(3x+1\right)\left(\frac{x^2+1-1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2\right)=x\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x\approx1,2818\end{cases}}\)
Thử lại, ta có x = 0 thoả mãn nghiệm phương trình.
Dòng thứ 5 từ trên xuống hình như nhầm thì phải
Ừ ừ, mình nhầm rồi bạn nhé, để mình sửa lại :
\(\Leftrightarrow x\left(3x-2\right)=x^2\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2-\frac{3x^2+x}{\sqrt{x^2+1}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x^2+x}{\sqrt{x^2+1}+1}=0\end{cases}}\)
Vì \(3x-2-\frac{3x^2+x}{\sqrt{x^2+1}+1}=0\)vô nghiệm nên x = 0 là nghiệm của phương trình.
Cảm ơn bạn góp ý nhé ^^