cho x,y thõa mãn :2x2 +y2+9=6x+2xy
tính giá trị biểu thức:A=x2019 y2020 - x2020 y2019 +1/9xy
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
Cho biểu thức M = x2023 - 2023.(x2022 - x2021 + x2020 - x2019 + ... + x2 - x )
Tính giá trị của biểu thức M với x = 2022
\(M=x^{2023}-2023.\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)
Ta có : \(x=2022\Rightarrow x+1=2023\)
\(\Rightarrow M=x^{2023}-\left(x+1\right).\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)
\(\Rightarrow M=x^{2023}-\left(x+1\right)x^{2022}+\left(x+1\right)x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}+...-\left(x+1\right)x^2+\left(x+1\right)x\)
\(\Rightarrow M=x^{2023}-x^{2023}-x^{2022}+x^{2022}+x^{2021}-x^{2021}-x^{2020}+x^{2020}+x^{2019}-x^{2019}-...-x^3-x^2+x^2+x\)
\(\Rightarrow M=x\)
\(\Rightarrow M=2022\)
Vậy \(M=2022\left(tạix=2022\right)\)
1.Tính giá trị biểu thức: 6x^2+5x-2 tại x thõa mãn /x-2/=1
2.Tính giá trị biểu thức: 2x^8-3y^5+2 tại x,y thõa mãn (x+1)^20+(y+2)^26=0
3.Tính giá trị biểu thức: P=6x^3-4x^2y-14y^2+21xy+9 tại x,y thõa mãn 2x^2+7y=0
Mình đang cần gấp lắm ạ, mong mọi người giúp, mình cảm ơn nhiều ạ
Tính giá trị biểu thức:A=x33+x2y-2x2-xy-y2+3y+x-5. Biết x+y-2=0
Cho hai số thực dương x,y thỏa mãn 2x + 2y = 4. Tìm giá trị lớn nhất Pmax của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy.
A. Pmax = 27 2
B. Pmax = 18
C. Pmax = 27
D. Pmax = 12
Đáp án B.
Ta có 4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y
⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .
Suy ra x y ≤ x + y 2 2 = 1
Khi đó
P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y
≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y
= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18
Vậy Pmax = 18 khi x = y = 1.
Cho hai số thực dương x,y thỏa mãn 2 x + 2 y = 4 . Tìm giá trị lớn nhất P m a x của biểu thức P = 2 x 2 + y 2 y 2 + x + 9 x y .
A. 26
B. 18
C. 27
D. 12
Cho hai số thực dương x,y thỏa mãn 2 x + 2 y = 4 . Tìm giá trị lớn nhất P m a x của biểu thức P = 2 x 2 + y 2 y 2 + x + 9 x y
A. P m a x = 27 2
B. P m a x = 18
C. P m a x = 27
D. P m a x = 12
Tính giá trị của biểu thức:
a) A = x2 - 4 tại x = 102
b) B = x2 + 6x + 9 tại x = 997
c) C = 4x2 - 4xy + y2 tại x = 39; y = -2
a: \(A=x^2-4=\left(x-2\right)\left(x+2\right)\)
Khi x=102 thì \(A=\left(102-2\right)\left(102+2\right)=104\cdot100=10400\)
b: \(B=x^2+6x+9=x^2+2\cdot x\cdot3+3^2=\left(x+3\right)^2\)
Khi x=997 thì \(B=\left(997+3\right)^2=1000^2=1000000\)
c: \(C=4x^2-4xy+y^2=\left(2x\right)^2-2\cdot2x\cdot y+y^2=\left(2x-y\right)^2\)
Khi x=39 và y=-2 thì \(C=\left(2\cdot39+2\right)^2=80^2=6400\)
Câu 1:
a, cho a,b là 2 số thực thỏa mãn điều kiện : a^2+b^2=2(8+ab) và a<b. Tính giá trị của biểu thức P=a^2(a+1)-b^2(b-1)+ab-3ab(a-b+1)+64
b, cho x,y thỏa mãn 2x^2+y^2+9=6x+2xy. Tính giá trị của biểu thức A=x^2019*y^2020-x^2020*y^2019+1/9xy
\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)
\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)