Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Nguyễn Bảo Lam
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 18:13

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Quang Huy
10 tháng 5 2017 lúc 20:25

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

Quỳnh Như
16 tháng 7 2017 lúc 9:33

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

le tra my
25 tháng 11 2017 lúc 15:35

Gọi số đo của các góc A,B,C trong tam giác ABC lần lượt là là a,b,c

Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và tổng ba góc là 180o

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180^o}{15}=12^o\)

+) Nếu \(\dfrac{a}{3}=12\)⇒ a= 36o

+)Nếu \(\dfrac{b}{5}\)=12⇒b=60o

+)Nếu \(\dfrac{c}{7}\)=12⇒c=84o

Vậy góc A bằng 36o, góc B bằng 60o, góc C bằng 84o

Dang Khang
Xem chi tiết
Đinh Minh Đức
22 tháng 12 2021 lúc 16:03

A=36

B=60

C=84

Nguyễn Nhất Linh
Xem chi tiết
Linh Kẹo
9 tháng 8 2016 lúc 10:38

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

Hùng Nguyễn
11 tháng 8 2016 lúc 12:04

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

Đặng Phương Linh
23 tháng 11 2017 lúc 21:11

1.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ nghịch vs 3;4;6.Tính số đo các góc của tam giác ABC.

2.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ thuận vs 3;4;5.Tính số đo các góc của tam giác ABC.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2018 lúc 3:41

Gọi a, b, c (độ) lần lượt là số đo 3 góc A, B, C. (0 < a; b; c < 180º).

Theo định lí tổng ba góc của tam giác ta có:

    a + b + c = 180.

Vì số đo 3 góc tỉ lệ với 3; 5; 7 nên ta có:

Bài 15 trang 67 sách bài tập Toán 7 Tập 1 | Giải SBT Toán 7

Vậy số đo ba góc của tam giác ABC là: 36o; 60o; 84o

dao xuan tung
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
19 tháng 9 2023 lúc 0:24

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)

Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)

Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)

Thảo Phương
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
30 tháng 3 2023 lúc 22:27

`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`

Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`

`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`

`-> x+y+z=180`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`

`-> x/2=y/3=z/4=20`

`->x=20*2=40, y=20*3=60, z=20*4=80`

Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`

Nguyễn Lê Phước Thịnh
30 tháng 3 2023 lúc 22:22

a:

Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)

a/2=b/3=c/4

b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=>a=40; b=60; c=80

nguyễn hồng ngọc
Xem chi tiết
Nguyễn Hữu Hoàng Hải Anh
21 tháng 11 2017 lúc 6:03

gọi số đo 3 góc của tam giác lần lượt là a,b,c => a+b+c = 180 độ( định lí tổng 3 góc trong tam giác

tỉ lệ với 2;3;5

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

                                                                     = \(\frac{a+b+c}{2+3+5}\) (tính chất dãy tỉ số bằng nhau)

                                                                      = \(\frac{180}{10}\)(do a+b+c=180 độ)

                                                                       = 18 độ

=> a = 18.2=36 độ

      b = 18.3= 54 độ

     c = 18.5 = 90 độ

PewPew
17 tháng 8 2018 lúc 13:56

Ta có: A+B+C=180*(tổng 3 góc của tam giác)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A/2+B/3+C/5=A+B+C=2+3+5=A+B+C/10=180*:10*=18*