Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Minh Khang
Xem chi tiết
Khúc Thị Ngân Hà
Xem chi tiết
Đinh Đức Hùng
15 tháng 2 2016 lúc 17:24

2n + 5 chia 2n + 3 dư 2

2n + 3 chia 2n + 1 dư 2

Không chứng minh được !

Yuu Shinn
15 tháng 2 2016 lúc 17:21

không được đâu vì các số này là số nguyên tố cùng nhau

Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2022 lúc 15:32

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

BÍCH THẢO
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

👾thuii
Xem chi tiết
Toru
11 tháng 11 2023 lúc 22:33

Có: 1n + 2n + 3n + 4n

= (1 + 2 + 3 + 4)n

= 10n

Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)

Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.

BÍCH THẢO
11 tháng 11 2023 lúc 22:26

Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.

Ta có: 1n + 2n + 3n + 4n = 10n

Để 10n chia hết cho 5, ta cần n chia hết cho 5.

Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.

 ⇒ Các số tự nhiên n chia hết cho 5.

--thodagbun--

Nguyễn Lê Nguyên Bảo
20 tháng 12 lúc 19:28

quá là ez 

đáp án là 5

Vì 1n = 1.5 = 5 : 5 = 1

2N = 2.5 = 10:5 = 2

Tương tự

Khánh Khánh
Xem chi tiết
Đăng Văn Long
Xem chi tiết
123456
23 tháng 11 2015 lúc 21:12

tick cho mình rồi mình làm cho

Đỗ Đức Hà
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 17:52

Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$

Nếu $n=4k$ thì:

$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$

$=1+16^k+81^k+16^{2k}$

$\equiv 1+1+1+1\equiv 4\pmod 5$

---------------

Nếu $n=4k+1$

$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$

$=1+16^k.2+81^k.3+16^{2k}.4$

$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$

Nếu $n=4k+2$

$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$

$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$

$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$

Nếu $n=4k+3$

$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$

$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$

$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$

Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$

Nguyenx Văn Tâm
Xem chi tiết
Lãnh Hạ Thiên Băng
30 tháng 11 2016 lúc 20:22

2.

Ta có:3n+1 chia hết cho 11-2n

=>3n+1chia hết cho -(2n-11)

=>3n+1 chia hết cho 2n-11

=>2.(3n+1) chia hết cho 2n-11

=>6n+22 chia hết cho 2n-11

=>6n-33+33+22 chia hết cho 2n-11

=>3.(2n-11)+55 chia hết cho 2n-11

=>55 chia hết cho 2n-11

=>2n-11=Ư(55)=(1,5,11,55)

=>2n=(12,16,22,66)

=>n=(6,8,11,33)

Vậy n=6,8,11,33

Luu Phuong Anh
30 tháng 11 2016 lúc 20:23

??????????????????????????????????

Hải Vy
30 tháng 11 2016 lúc 20:26

Ta có n-2 chia hết cho n-2 

=> 2(n-2) chia hết cho n-2 

=> 2n - 4 chia hết cho n-2 

Mà 2n+3 chia hết cho n-2 

Vậy ta có ( 2n-4)-(2n+3) chia hết cho n-2

=> 2n -4-2n-3 chia hết cho n-2

=> 1 chia hết cho n-2 

=> n-2 là ƯC của 1 

( Phần còn lại bạn tự làm nhé )