CM S=1620-274 chia hết cho 63
chứng tỏ S=16^20 - 2^74 chia hết cho 63
tk
S=1620-274
=(24)20-274
=280-274=274.26-274=274.(26-1)=274.63 chia hết cho 63
=>S chia hết cho 63(đpcm)
Trong các số sau, số nào chia hết cho cả 2; 5 và 9?
A. 1323 B. 1620 C. 1125 D. 1020
1, Cho A = 134xy. Tìm x,y để A chia hết cho 5 và 9
2, Tìm x,y để 1x8y2 chia hết cho 4 và 9
3, Điền số vào dấu * để
a) 35* chia hết cho 2 và 5
b) 7*2 chia hết cho 9
c) *63* chia hết cho 2,3,5,9
4, Cho tổng S = 123 + 12 + x
Tìm điều kiện của x để :
a) S chia hết cho 3
b) S ko chia hết cho 3
c) S chia hết cho 2
Bài 1: y=5; x=5
Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)
Bài 3:
a: *=5
b: *=0; *=9
c: *=9
CM rằng : 2454.5424.210 chia hết cho 7263
Bạn tham khảo nhé! Mình không chắc là đúng hay không nữa
https://hoc24.vn/hoi-dap/question/124418.html
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)\(=2^{3.54}.3^{54}.3^{3.24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{72}.2^{24}.2^{10}=2^{162+72+54+10}.3^{54+72}\)\(=2^{298}.3^{126}\).
\(72=3^3.2^3\)
\(72^{63}=\left(3^3.2^3\right)^{63}=3^{189}.2^{189}\)
Như vậy đề bài sai.
Chứng tỏ S=1620-274 chia hết cho 63
Nhầm thực ra bài toán là :
Cho A=1-1/2+1/3-1/4+1/5-1/6+.....+1/99-1/100. Chứng tỏ 7/12<A<5/6
Giải đầy đủ cho mình nhé
Tìm x,y nguyên dương để x+1 chia hết cho y và y+2 chia hết cho x
1, Cho A = 134xy. Tìm x,y để A chia hết cho 5 và 9
2, Tìm x,y để 1x8y2 chia hết cho 4 và 9
3, Điền số vào dấu * để
a) 35* chia hết cho 2 và 5
b) 7*2 chia hết cho 9
c) *63* chia hết cho 2,3,5,9
4, Cho tổng S = 123 + 12 + x
Tìm điều kiện của x để :
a) S chia hết cho 3
b) S ko chia hết cho 3
c) S chia hết cho 2
giúp mình vs, mình đang cần gấp
1) 134xy chia hết cho 5
=>y=0 hoặc y=5
+)Nếu y=0
=>134xy=134x0
Để 134x0 chia hết cho 9 thì 1+ 3 + 4 + x + 0 = 8 + x chia hết cho 9
=>x=1
+)Nếu y=5
=>134xy=134x5
Để 134x5 chia hết cho 9 thì 1 + 3 + 4 + x + 5 = 13 chia hết cho 9
=>x = 5
Vậy y = 0 thì x = 1 hoặc y = 5 thì x = 5
2) 1x8y2 chia hết cho 4 và 9
1x8y2 chia hết cho 4 <=>y2 chia hết cho 4 <=>y={1;5;9}
y=1=>1x812 chia hết cho 9<=>(1+x+8+1+2) chia hết cho 9
<=>12+x chia hết cho 9 <=>x=6
y=5=>1x852 chia hết cho 9<=>(1+x+8+5+2) chia hết cho 9
<=>16+x chia hết cho 9 <=>x=2
y=9=>1x892 chia hết cho 9<=>(1+x+8+9+2) chia hết cho 9
<=>20+x chia hết cho 9 <=>x=7
y=0 thì x=1
y=5 thì x=5
Mình không biết co đúng k
1. S= 3 + 32 + 35 + ... + 32013 + 32015
a. CM: S không chia hết cho 9
b. CM: S chia hết cho 70
1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)
\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)
\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)
\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)
1 cm S=1+2+2^2+...+2^39 chia hết cho 15
2 cm A=a+a^2+a^3+ ...+a^2.n chia hết cho a+1
3 cm tổng 3 số tự nhiên liên tiếp chia hết cho 3
,...... 5.................................................5
4 cho a, b thuộc N và a- b chia hết cho 7. cm 4.a +3.b chia hết cho 7
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
Bài 1:Tổng sau có chia hết cho 2;3;5;9 không?
A=400×7×36+1620
Bài 2:Cho C=3+3 mũ 2+3mũ 3+.........+3mũ 60
a)Chứng minh rằng C chia hết cho 4
b)Tính tổng C và cho biết C là số chẵn hay lẻ
Bài 1:
A=400x7x36+1620
*400x7x36 \(⋮\)2;3;5;9
1620 \(⋮\) 2;3;5;9
\(\Rightarrow\)400x7x36+1620\(⋮\) 2;3;5;9
Bài 2:
C=3+32+33+........+360
=(3+32)+(33+34)+...........+(359+360)
=3.(1+2)
Bài 2 :
a, \(C=3+3^2+3^3...+3^{60}\)
\(\Rightarrow C=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{59}+3^{60}\right)\)
\(\Rightarrow C=1\left(1+3\right)+3^3\left(1+3\right)+..+3^{59}\left(1+3\right)\)
\(\Rightarrow C=4.\left(1+3^3+...+3^{59}\right)\)
\(\Rightarrow C⋮4\)
\(b,1+3+3^2+3^3+...+3^{60}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{60}+3^{61}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3..+3^{60}+3^{61}\right)-\left(1+3+3^2+...+3^{60}\right)\)
\(\Rightarrow2A=3^{61}-1\)
\(\Rightarrow A=\frac{3^{61}-1}{2}\)