Tìm nghiệm nguyên 2x2+3y2+4x=19
giải phương trình nghiệm nguyên : 2x2 + 5xy + 3y2 = 0
\(2x^2+5xy+3y^2\\= 2x^2+2xy+3xy+3y^2\\= 2x\left(x+y\right)+3y\left(x+y\right)\\=\left(2x+3y\right)\left(x+y\right) \)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)
giải phương trình nghiệm nguyên:
a,2x2+4x=19-3y2
b,y2=-2(x2-x3y-32)
a)2x2+4x=19-3y2
⇔2x2+4x+2=21-3y2
⇔2(x+1)2=3(7-y2)Ta có 2(x+1)2⋮2⇒3(7-y2)⋮2
⇒7-y2⋮2
⇒y lẻ (1)
Ta lại có 2(x+1)2≥0
⇒3(7-y2)≥0
⇒7-y2≥0
⇒y2≤7
⇒y2∈{1;4} (2)
Từ (1),(2)⇒y2∈{1}
⇒y∈{-1;1}
Ta có y2=1⇒2(x+1)2=3(7-y2)=18⇒(x+1)2=9
⇒x+1=3 hoặc x+1=-3
⇒x=2 hoặc x=-4
Vậy {x,y}={(-1;2);(-1;-4);(1;2);(1;-4)}
Giải pt nghiệm nguyên:
a,3y2-xy-2x+y+1=0
b,x2+3y2+4xy-2x-6y-24=0
c,x2+8y2+6xy+4x+8y-17=0
d,2x2+5y2-8x+3y=0
Các bn cứ giải giúp mik vói,mai mik phải nộp rồi
tìm gtnn (gtln) của:
a) A= 4x2-4x+10 b) B= 2x2-3x-1
c) C= 4x2+2y2+4xy+4x+6y+1 d) D= (3x-1)2-4(3x-1)x+4x2
e) G= 9x2+2y2+6xy+4y+5 f) H= 2x2+3y2-2xy+4y+2x+5
g) K= xy+yz+zx; biết x+y+z= 3
nhờ mn giúp mik vs nha
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
1) Tìm nghiệm nguyên của phương trình : x2= 2y2+2013
2) Giải phương trình x3+2x2- 4x +\(\dfrac{8}{3}\)=0
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).
Tìm nghiệm của các đa thức sau
a)x2-2(x2-8) b)B(X)=3x-5-4(2x+3) c)M(y)=3y2-5y d) D(x)=2x2-3(x2+4)
Giúp tớ với bài khó quá
a: đặt \(x^2-2\left(x^2-8\right)=0\)
\(\Leftrightarrow16-x^2=0\)
=>x=4 hoặc x=-4
b: Đặt \(3x-5-4\left(2x+3\right)=0\)
=>3x-5-8x-12=0
=>-5x-17=0
=>-5x=17
hay x=-17/5
c: Đặt \(3y^2-5y=0\)
=>y(3y-5)=0
=>y=0 hoặc y=5/3
d: Đặt \(2x^2-3\left(x^2+4\right)=0\)
\(\Leftrightarrow-x^2-12=0\)
hay \(x\in\varnothing\)
tìm nghiệm nguyên của phương trình
x2+3y2+2xy−18(x+y)+73=0x2+3y2+2xy−18(x+y)+73=0
Tìm các nghiệm nguyên của phương trình : 2x^2+3y^2+4x=19
tham khảo:
<=> 2x^2+3y^2+4x -19 =0
<=> 2.(x2 + 2x +1) + 3.y2 = 21
<=> 2.(x+1)2 + 3. y2 = 21
Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương
=> (x+1)2 =0 hoặc 9
+) x + 1 = 0 => x = -1 => y 2 = 7 => loại
+) (x+1)2 = 9 => y2 = 1
=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4
y2 = 1 => y = 1 hoặc y = -1
Vậy....
Tìm đa thức P(x) biết P ( x ) - ( 5 x 2 - 4 y 2 ) = 2 x 2 - 3 y 2 + 5 y 2 - 1
A. 7 x 2 - 2 y 2 - 1
B. 7 x 2 + 2 y 2 - 1
C. - 3 x 2 - 2 y 2 - 1
D. - 7 x 2 - 2 y 2 + 1
Chọn A
Ta có: P(x) = 2x2 - 3y2 + 5y2 - 1 + 5x2 - 4y2
= 7x2 - 2y2 - 1.
tìm nghiệm nguyên của phương trình 2x^2 + 3y^2+4x=19