Đáp án: D
A: \(f(x)=x^2+2x-x^2=2x\) → Bậc 1.
B: \(f(x)=x+3\) → Bậc 1.
C: Bậc 4.
Áp dụng cosi:
`x^2+y^2>=2xy`
`=>x^2+y^2>=2.7=14`
`=>` Chọn C.14
Tìm giá trị nhỏ nhất của biểu thức:
a) A = | x + 2 | + | x - 6 |
b) B = |x + 5 | + | x + 2 | + | x - 7 | + | x - 8 |
c) C = | x - 3 | + | x - 4 | + | x - 5 |
Mong các bạn giải giúp mik với ạ!!!
a, Ta có: \(A=\left|x+2\right|+\left|x-6\right|=\left|x+2\right|+\left|6-x\right|\ge\left|x+2+6-x\right|=8\)
Dấu "=" xảy ra khi \(\left(x+2\right)\left(6-x\right)\ge0\Rightarrow-2\le x\le6\)
Vậy MinA = 8 khi \(-2\le x\le6\)
b, Ta có: \(B=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|7-x\right|\right)+\left(\left|x+2\right|+\left|8-x\right|\right)\)
\(\ge\left|x+5+7-x\right|+\left|x+2+8-x\right|=12+10=22\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)\left(7-x\right)\ge0\\\left(x+2\right)\left(8-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}-5\le x\le7\\-2\le x\le8\end{cases}}\Rightarrow-2\le x\le8}\)
Vậy MinB = 22 khi \(-2\le x\le8\)
c, Ta có: \(C=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|=\left(\left|x-3\right|+\left|5-x\right|\right)+\left|x-4\right|\)
Vì \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\forall x\)
Và \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-3\right|+\left|x-5\right|\right)+\left|x-4\right|\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)\left(5-x\right)\ge0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}3\le x\le5\\x=4\end{cases}\Rightarrow}x=4}\)
Vậy MinC = 2 khi x = 4
\(cosA+cosB+cosC=2cos\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{A-B}{2}\right)+1-2sin^2\dfrac{C}{2}\)
\(=-2sin^2\dfrac{C}{2}+2sin\dfrac{C}{2}cos\left(\dfrac{A-B}{2}\right)+1\)
\(=-2\left[sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right]^2-\dfrac{1}{2}sin^2\dfrac{A-B}{2}+\dfrac{3}{2}\le\dfrac{3}{2}\)
Bài 1 : Tìm giá trị nhỏ nhất của các biểu thức sau :
a, A = x2 + 3x + 4 | d, D = 4x2+ 4x - 24 |
b, B = 2x2 - x + 1 | e, E = x2 + 6x - 11 |
c, C = 5x2 + 2x - 3 | g, G = \(\dfrac{1}{4}x^2+x-\dfrac{1}{3}\) |
MONG MỌI NGƯỜI GIÚP VỚI Ạ !!! EM CẦN GẤP !
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
d: Ta có: \(D=4x^2+4x-24\)
\(=4x^2+4x+1-25\)
\(=\left(2x+1\right)^2-25\ge-25\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
e: ta có: \(E=x^2+6x-11\)
\(=x^2+6x+9-20\)
\(=\left(x+3\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=-3
mình sắp đi thi rồi ~ mong mn giúp nhanh được không ạ? cảm ơn nhiều <3
Giải Phương Trình 8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
Chứng minh bất đẳng thức sau x/y+y/x lớn hơn hoặc bằng 2 ( với x, khác 0)
Tìm giá trị nhỏ nhất của biểu thức P=x^2/y^2+y^2/x^2-3(x/y+y/x)+5 với x,y khác 0
cho ba số a,b,c thỏa a+b+c=0,a^2+b^2+c^2=2009 Tính A=a^4+b^4+c^4
Bài 1:cho 2 số nguyên.số thứ nhất chia 5 dư 1,số thứ 2 chia 5 dư 2.hỏi tổng các bình phương của 2 số này có chia hết cho 5 không? Giải thích?
bài 2: so sánh:
a) x^2 -20x+101 và 0
b) 4a^2 + 4a +2 và 0
bài 3:Tìm giá trị của x để cho giá trị của biểu thức là nhỏ nhất? tÌm giá trị nhỏ nhất đó
a) 4x^2 +12x+15
b) 9x^2 -6x+5
bài 4: Thực hiện:
a) ( a+b+c-d)(a+b-c+d)
b) (a-b-c+d)( a-b+c-d)
giải giúp mình vs,mk cần gấp lắm ạ,mk cảm ơn
Bài 1:
\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)
\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)
\(=25c^2+10c+1+25d^2+20d+4\)
\(=25c^2+25d^2+10c+20d+5\)
\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)
Bài 3:
a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)
Dấu '=' xảy ra khi x=-3/2
b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)
Dấu '=' xảy ra khi x=1/3
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)