a) \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
b)\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Thực hiện phép tính:
a) \(\dfrac{x}{2x-y}-\dfrac{2x-y}{4x-2y}\)
b)\(\dfrac{3x+1}{x^2-1}-\dfrac{x}{2x-2}\)
c) \(\dfrac{x-2}{x^2-4}-\dfrac{-8-x}{3x^2+6x}\)
d) \(\dfrac{2}{2x-3}-\dfrac{x}{2x+3}-\dfrac{2x+1}{9-4x^2}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
quy đồng các phân thức sau
a,\(\dfrac{x+1}{x-1};\dfrac{x-1}{x+1};\dfrac{4}{1-x^2}\)
b,\(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3};\dfrac{x}{y^2xy}\)
c,\(\dfrac{4x}{x-2};\dfrac{3x}{x-2};\dfrac{12x}{x^2-4}\)
d,\(\dfrac{7}{x};\dfrac{x}{x+6};\dfrac{36}{x^2+6x}\)
\(a,\left(1\right)=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)};\left(2\right)=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)};\left(3\right)=\dfrac{-4}{\left(x-1\right)\left(x+1\right)}\\ b,\left(1\right)=\dfrac{x^4y^3}{xy^3\left(x-y\right)^3};\left(2\right)=\dfrac{x\left(x-y\right)^3}{xy^3\left(x-y\right)^3}\\ c,\left(1\right)=\dfrac{4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)};\left(2\right)=\dfrac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)};\left(3\right)=\dfrac{12x}{\left(x-2\right)\left(x+2\right)}\\ d,\left(1\right)=\dfrac{7\left(x+6\right)}{x\left(x+6\right)};\left(2\right)=\dfrac{x^2}{x\left(x+6\right)};\left(3\right)=\dfrac{36}{x\left(x+6\right)}\)
1, Thực hiện phép tính:
a, \(\dfrac{1-3x}{2}+\dfrac{x+3}{2}\)
b, \(\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)
c, \(\dfrac{3x+1}{x+y}-\dfrac{2x-3}{x+y}\)
d, \(\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)
e, \(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)
2, Thực hiện phép tính:
a, \(\dfrac{1}{x}.\dfrac{6x}{y}\)
b, \(\dfrac{2x^2}{y}.3xy^2\)
c, \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
d, \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
e, \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
f, \(\dfrac{x^2-36}{2x+10}.\dfrac{3}{6-x}\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
Thực hiện phép tính :
a) \(\dfrac{3x+2}{x^2}\div\dfrac{6x+4}{2x^2}\)
b) \(\dfrac{4xy}{x+y}\div\dfrac{6x^2y^3}{x^2-y^2}\)
`a)[3x+2]/[x^2]:[6x+4]/[2x^2]`
`=[3x+2]/[x^2].[2x^2]/[2(3x+2)]`
`=1`
____________________________________________________
`b)[4xy]/[x+y]:[6x^2y^3]/[x^2-y]`
`=[4xy]/[x+y].[(x-y)(x+y)]/[6xy.xy^2]`
`=[2(x-y)]/[3xy^2]=[2x-2y]/[3xy^2]`
BÀI 6 :rút gọn phân thức
\(\dfrac{x^3+3x^3+3x+1}{x^2+x}\)
b)\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
c)\(\dfrac{x^2+4x+4}{2x+4}\)
d)\(\dfrac{(x-1)(-x-2)}{x+2}\)
e)\(\dfrac{x^2-y^2}{x+y}\)
f)\(\dfrac{3x^2+4xy^2}{6x+8y}\)
g)\(\dfrac{-3x^2-6x}{4-x^2}\)
BÀI 7 :quy đồng mẫu thức các phân thức
\(\dfrac{2}{5x^3y^2}và \dfrac{3}{4xy}\)
b)\(\dfrac{x}{x^2-2xy+y^2} và \dfrac{x}{x^2-xy}\)
c)\(\dfrac{1}{x+2};\dfrac{2}{2x+4}và \dfrac{3}{3x+6}\)
d)\(\dfrac{1}{x+3};\dfrac{2}{2x-6}và \dfrac{3}{3x-9}\)
6:
a: ĐKXĐ: x<>0
\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)
\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)
b: ĐKXĐ: x<>1
\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)
c: ĐKXĐ: x<>-2
\(\dfrac{x^2+4x+4}{2x+4}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
d: ĐKXĐ: x<>-2
\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)
\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)
e: ĐKXĐ: x<>-y
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)
7:
a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)
\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)
b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)
\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)
c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)
d:
\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)
\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
bài 11.rút gọn biểu thức:
\(a,\dfrac{9x^2}{11y^2}:\dfrac{3x}{2y}:\dfrac{6x}{11y}\) \(b,\dfrac{3x+15y}{x^3-y^3}:\dfrac{x+5y}{x-y}\)
\(c,\dfrac{x^2-1}{x^2-4x+4}:\dfrac{x+1}{2-x}\) \(d,\dfrac{5x+10}{x+2}:\dfrac{5y}{x}\)
\(e,\dfrac{2x}{3x-3y}:\dfrac{x^2}{x-y}\) \(f,\dfrac{5x-3}{4x^2y}-\dfrac{x-3}{4x^2y}\)
\(g,\dfrac{3x+10}{x+3}-\dfrac{x+4}{x+3}\) \(h,\dfrac{4}{x-1}+\dfrac{2}{1-x}+\dfrac{x}{x-1}\)
\(i,\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\) \(j,\dfrac{x-2}{x-6}-\dfrac{x-18}{6-x}+\dfrac{x+2}{x-6}\)
\(k,\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\) \(m,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(n,\dfrac{3}{x+3}-\dfrac{x-6}{x^2+3x}\) \(p,\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
Quy đồng mẫu thức các phân thức :
a) \(\dfrac{7x-1}{2x^2+6x};\dfrac{5-3x}{x^2-9}\)
b) \(\dfrac{x+1}{x-x^2};\dfrac{x+2}{2-4x+2x^2}\)
c) \(\dfrac{4x^2-3x+5}{x^3-1};\dfrac{2x}{x^2+x+1};\dfrac{6}{x-1}\)
d) \(\dfrac{7}{5x};\dfrac{4}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)
e) \(\dfrac{5x^2}{x^3+6x^2+12x+8};\dfrac{4x}{x^2+4x+4};\dfrac{3}{2x+4}\)