Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Oanh
Xem chi tiết
Herera Scobion
3 tháng 5 2018 lúc 21:02

a ) Xét Δ AHB và Δ AHC có :

AB = AC ( GT )

Góc AHB = góc AHC

AH là cạnh chung

=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông )

tôn hiểu phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 13:33

a: Xet ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó:ΔAHB=ΔAHC

b: Xét ΔIBC có 

IH là đường cao

IH là đường trung tuyến

Do đó: ΔIBC cân tại I

hay IB=IC

Ngô Thanh Huyền
Xem chi tiết
Tớ thích Cậu
Xem chi tiết
Trần Huyền Trang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2019 lúc 3:27

TruongQuocAnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 8:10

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAEF có

FH là đường trung tuyến

FC=2/3FH

Do đó: C là trọng tâm của ΔAEF

=>AC là đường trung tuyến ứng với cạnh FE

mà M là trung điểm của FE

nên A,C,M thẳng hàng

Lê Tú
Xem chi tiết
Giản Nguyên
25 tháng 2 2018 lúc 11:34

a, đơn giản ta CM được hai tam giác DCB và EBC bằng nhau => góc EBC = góc DCB => tam giác BIC cân tại I => IB = IC (đpcm)

tương tự chứng minh được hai tam giác DIB và EIC bằng nhau => ID = IE (đpcm)

b, ta có tam giác DAE cân tại A => 2góc D = 180-góc A

             tam giác BAC cân tại A => 2 góc B = 180o - góc A

=> góc D = góc B  => BC// DE (đpcm)

c, Nối AM => AM vừa là trung tuyến vừa là đường trung trựctại M của BC

    Nối IM => IM vừ là trung tuyến vừa là đường trung trực tại M của BC

=> AM và IM cùng nằm trên đường trung trực của BC tại M hay 3 điểm A,M,I thẳng hàng

๖Fly༉Donutღღ
25 tháng 2 2018 lúc 10:34

a) Tam giác ABC cân tại A suy ra \(\widehat{B_1}=\widehat{C_1}\)

Xét tam giác ABM và tam giác ACM có :

AB = AC ( tam giác ABC cân tại A )

\(\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)

BM = CM ( gt )

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ABI và tam giác ACI có :

AI chung

AB = AC ( tam giác ABC cân tại A )

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow IB=IC\)

Vì AD = AB + BD

AE = AC + BC 

Mà AB = AC ( tam giác ABC cân tại A )

DB = EC ( gt )

\(\Rightarrow AD=AE\)

Xét tam giác ADI và tam giác AEI có :

AI chung

AD = AE ( cmt )

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(\Rightarrow\Delta ADI=\Delta AEI\left(c-g-c\right)\)

\(\Rightarrow DI=EI\)hay ID = IE 

b) Vì tam giác ABC cân tại A ( gt )

\(\Rightarrow\)\(\widehat{B_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Vì tam giác ADE có AD = AE ( cmt )

Suy ra tam giác ADE cân 

\(\Rightarrow\widehat{D}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{B_1}=\widehat{D}\)mà hai góc này ở vị trí đồng vị

Suy ra BC // DE 

c) Ta có : \(\widehat{M_2}=\widehat{M_1}\left(\Delta ABM=\Delta ACM\right)\left(cmt\right)\)

Mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( 2 góc này ở vị trí kề bù )

\(\widehat{M_2}=\widehat{M_3}\)( đối đỉnh )

\(\Rightarrow\widehat{M_1}+\widehat{M_3}=180^o\)

\(\Rightarrow\)A ; M ; I thẳng hàng 

manh
Xem chi tiết

a: Ta có: \(\widehat{ABC}+\widehat{DBC}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{BCE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{DBC}=\widehat{BCE}\)

Xét ΔDBC và ΔECB có

BD=CE

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>DC=EB 

ΔDBC=ΔECB

=>\(\widehat{BCD}=\widehat{CBE}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

Ta có: IB+IE=BE

IC+ID=CD
mà IB=IC và BE=CD

nên IE=ID

b: Xét ΔABC có \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)

nên BC//DE
c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

Ta có: IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,M,I thẳng hàng