Tìm lim
Lim \(\dfrac{n.\sin n+\left(n+1\right).\cos n}{n^2-n+1}\)
Biết \(\dfrac{Sin^4x-Cos^4x+Cos^2x}{2\left(1-Cosx\right)}=Cos^k\dfrac{mx}{n}\).Trong đó \(\dfrac{m}{n}\) tối giản. Tìm m,k,n.
\(\dfrac{sin^4x-cos^4x+cos^2x}{2\left(1-cosx\right)}=\dfrac{\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+cos^2x}{2\left(1-cosx\right)}\)=\(\dfrac{sin^2x}{2\left(1-cosx\right)}=\dfrac{1-cos^2x}{2\left(1-cosx\right)}=\dfrac{\left(1-cosx\right)\left(1+cosx\right)}{2\left(1-cosx\right)}=\dfrac{1}{2}\left(1+cosx\right)\)=\(cos^2\left(\dfrac{x}{2}\right)\).
Suy ra k=2, m=1 và n=2.
Cho \(0^o< \alpha< 90^o\) và \(\dfrac{sin^4\alpha}{m}+\dfrac{cos^4\alpha}{n}=\dfrac{1}{m+n}\left(m,n>0\right)\)
Cmr \(\dfrac{sin^{2010}\alpha}{m^{1004}}+\dfrac{cos^{2010}\alpha}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Cho \(0^o< \alpha< 90^o\) có \(\dfrac{sin^4\alpha}{m}+\dfrac{cos^4\alpha}{n}=\dfrac{1}{m+n}\left(m,n>0\right)\)
CMR \(\dfrac{sin^{2010}\alpha}{m^{1004}}+\dfrac{cos^{2010}\alpha}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Bằng phương pháp quy nạp, chứng minh các đẳng thức sau với \(n\in N^{\circledast}\)
a) \(A_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)}\)
b) \(B_n=1+3+6+10+...+\dfrac{n\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)
c) \(S_n=\sin x+\sin2x+\sin3x+...+\sin nx=\dfrac{\sin\dfrac{nx}{2}\sin\dfrac{\left(n+1\right)x}{2}}{\sin\dfrac{x}{2}}\)
b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.
c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.
Cho \(sin\left(x\right)+cos\left(x\right)=\dfrac{\sqrt{2}}{2}\).Trong kết quả sau đây kết quả nào sai
A.\(sin\left(x\right).cos\left(x\right)=\dfrac{-1}{4}\) B. \(sin\left(x\right)-cos\left(x\right)=\pm\dfrac{\sqrt{6}}{2}\)
C.\(sin\left(x\right)^4+cos\left(x\right)^4=\dfrac{7}{8}\) D.\(tan\left(x\right)^2+cot\left(x\right)^2=12\)
giúp mình cả cách bấm máy tính luôn
Chứng minh rằng:
a) \(\left(\dfrac{tga+cosa}{1+cotga.cosa}\right)^n=\dfrac{tg^na+cos^na}{1+cotg^na.cos^na},\forall n\in Z^+\)
b) \(tga.tgb=\dfrac{tga+tgb}{cotga+cotgb}\)
c) \(\dfrac{tg^2a-tg^2b}{tg^2a.tg^2b}=\dfrac{sin^2a-sin^2b}{sin^2a.sin^2b}\)
g) \(\dfrac{1}{4}\left(\sqrt{\dfrac{1+sina}{1-sina}}-\sqrt{\dfrac{1-sina}{1+sina}}\right)^2=tg^2a\)
Chứng minh rằng:
\(\sin^3\dfrac{\alpha}{3}+3\sin^3\dfrac{\alpha}{3^2}+...+3^{n-1}\sin^3\dfrac{\alpha}{3^n}=\dfrac{1}{4}\left(3^n\sin\dfrac{\alpha}{3^n}-\sin\alpha\right)\)
Chứng minh:
a)
\(\sum\limits^n_{i=1}cos\dfrac{2\left(i-1\right)\pi}{n}=0\)
b) \(\sum\limits^n_{i=1}sin\dfrac{2\left(i-1\right)\pi}{n}=0\)
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
\(B=\left(sina+cosa\right)^2-\left(cosa-sina\right)^2=\left(sin^2a+2sinacosa+cos^2a\right)-\left(cos^2a-2cosasina+sin^2a\right)=sin^2a+2sinacosa+cos^2a-cos^2a+2cosasina-sin^2a=4sinacosa\)\(A=\dfrac{1+2sinacosa}{sina+cosa}=\dfrac{sin^2a+cos^2a+2cosasina}{sina+cosa}=\dfrac{\left(sina+cosa\right)^2}{sina+cosa}=sina+cosa\)
C mik bó tay