Cho \(0^o< \alpha< 90^o\) có \(\dfrac{sin^4\alpha}{m}+\dfrac{cos^4\alpha}{n}=\dfrac{1}{m+n}\left(m,n>0\right)\)
CMR \(\dfrac{sin^{2010}\alpha}{m^{1004}}+\dfrac{cos^{2010}\alpha}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
M = \(\dfrac{\left(cos\alpha-sin\alpha\right)^2-\left(cos\alpha+sin\alpha\right)^2}{cos\alpha.sin\alpha}\)
1. cho x là góc nhọn, chứng minh \(\dfrac{1}{\sin^2}x\) - 1 = \(\dfrac{1}{\tan^2x}\)
2. cho \(\cos x=\dfrac{1}{3}\); tính giá trị của \(A=\dfrac{1}{\cot^2x}+1\)
3. đơn giản biểu thức: \(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
4.cho 00 < 900, c/m \(\dfrac{\sin^2\alpha-\cos^2\alpha+\cos^4\alpha}{\cos^2\alpha-\sin^2\alpha+\sin^4\alpha}=\tan^4\alpha\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
D = \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
Giúp mk vs please
Cho biết \(\sin\alpha+\cos\alpha=\dfrac{7}{5},\left(0^o< \alpha< 90^o\right)\)
Tính \(\tan\alpha\)?
Cho \(\cos\alpha=\dfrac{3}{4}\). Hãy tìm \(\sin\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?