Bài 2: Tỉ số lượng giác của góc nhọn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Vũ Lê

Cho biết \(\sin\alpha+\cos\alpha=\dfrac{7}{5},\left(0^o< \alpha< 90^o\right)\)

Tính \(\tan\alpha\)?

Luân Đào
24 tháng 7 2019 lúc 19:50

Đặt \(\sin\alpha=x,\cos\alpha=y\)

Ta có hpt:

\(\left\{{}\begin{matrix}x+y=\frac{7}{5}\\x^2+y^2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y=\frac{7}{5}\\xy=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\frac{\left(\frac{7}{5}\right)^2-1}{2}=\frac{12}{25}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{7}{5}-y\\xy=\frac{12}{25}\end{matrix}\right.\)

\(\Rightarrow xy=y\left(\frac{7}{5}-y\right)=\frac{12}{25}\)

\(\Leftrightarrow\frac{7}{5}y-y^2=\frac{12}{25}\Leftrightarrow y^2-\frac{7}{5}y+\frac{12}{25}=0\)

\(\Delta=\frac{49}{25}-4\cdot\frac{12}{25}=\frac{1}{25}>0;\sqrt{\Delta}=\frac{1}{5}\)

phương trình có 2 nghiệm phân biệt:

\(\left\{{}\begin{matrix}y=\frac{\frac{7}{5}+\frac{1}{5}}{2}=\frac{4}{5}\\y=\frac{\frac{7}{5}-\frac{1}{5}}{2}=\frac{3}{5}\end{matrix}\right.\)

Thay vào tìm x ta được các tập nghiệm: \(\left(x,y\right)=\left(\frac{3}{5};\frac{4}{5}\right);\left(\frac{4}{5};\frac{3}{5}\right)\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sin\alpha=\frac{3}{5}\\\cos\alpha=\frac{4}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}\sin\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\tan\alpha=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{matrix}\right.\)

(Áp dụng \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\))


Các câu hỏi tương tự
Eren
Xem chi tiết
Eren
Xem chi tiết
Mai Thị Thanh Xuân
Xem chi tiết
Cao Đỗ Thiên An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đinh Trí Gia BInhf
Xem chi tiết
Lương Hoàng Nam
Xem chi tiết
Huỳnh Nguyên
Xem chi tiết