Dùng kết quả của câu 1.7 để tính giới hạn của các dãy số có số hạng tổng quát như sau :
a) \(u_n=\dfrac{1}{n!}\)
b) \(u_n=\dfrac{\left(-1\right)^n}{2n-1}\)
c) \(u_n=\dfrac{2-n\left(-1\right)^n}{1+2n^2}\)
d) \(u_n=\left(0,99\right)^n\cos n\)
e) \(u_n=5^n-\cos\sqrt{n}\pi\)
Cho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{4}\\u\left(n+1\right)=\left(u\left(n\right)\right)^2+\dfrac{u\left(n\right)}{2}\end{matrix}\right.\)
CM với mọi n thì 0<u(n)<\(\dfrac{1}{4}\) và\(\dfrac{u\left(n+1\right)}{u\left(n\right)}\le\dfrac{3}{4}\)
Từ đó suy ra limu(n)=o
a,CMR :dãy u(n)=\(\left(1+\dfrac{1}{n}\right)^n\)có giới hạ hữu hạn
b đặt lim(1+\(\dfrac{1}{n}\))^n =e .Tính các giưới hạn sau ; lim\(\left(\dfrac{n+1}{n-1}\right)^{n+2}\)và lim\(\left(\dfrac{n-2}{n+3}\right)^{n+1}\)
Cho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{2}\\u\left(n+1\right)=\dfrac{u\left(n\right)}{n+1}\end{matrix}\right.\)
a, CM : với mọi n thì 0<u(n) và \(\dfrac{u\left(n\right)}{n+1}\)\(\le\dfrac{1}{2}\)
b, Từ đó suy ra limu(n)=0
giới hạn \(lim\dfrac{1-2+4-...+\left(-2\right)^{n-1}}{1-3+9-...+\left(-3\right)^{n-1}}=\dfrac{4\left[1-\left(-2\right)^n\right]}{3\left[1-\left(-3\right)^n\right]}\) bằng?
Tìm các giới hạn sau:
a)\(lim\left[n^2\left(\sqrt{n^2+2}-\sqrt{n^2+4}\right)\right]\)
b)lim( \(\dfrac{3}{n-2}-5n\))
c) lim(\(\dfrac{n-1}{\sqrt{3}-n}-\dfrac{4}{2^{-n}}\))
d) \(lim\left(\dfrac{n^2-4}{n-2}-\dfrac{3n^2+4}{n}\right)\)
e) \(lim\dfrac{\sqrt{n^2+1}-n\sqrt{5}}{\sqrt{n^2+1}+n\sqrt{5}}\)
Tìm các giới hạn sau:
\(a,lim\dfrac{3+4^n}{1+3.4^{n+1}}\)
\(b,lim\dfrac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}\)
1. lim\(\dfrac{\left(n+2\right)^{50}.\left(n-3\right)^{80}}{\left(2n-1\right)^{40}.\left(3n-2\right)^{45}}\)
2. lim\(\dfrac{4^n}{2.3^n+4^n}\)
3. lim\(\dfrac{3^n-2.5^n}{7+3.5^n}\)
4. lim\(\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}\)
5. lim\(\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}\)
Tìm các giới hạn sau:
a) \(lim\sqrt[3]{-n^3+2n^2-5}\)
b) \(lim\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
c) \(lim\left(\dfrac{1}{n+1}-n\right)\)
d) \(lim\left(\dfrac{2n^2-1}{n+1}-2n\right)\)
e) \(lim\dfrac{2n^3+n^2-3n+1}{2-3n}\)