Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phước Hoàng
Xem chi tiết
Phước Hoàng
Xem chi tiết
pham dung
Xem chi tiết
pham dung
15 tháng 11 2017 lúc 21:47

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

Thanh Tu Nguyen
Xem chi tiết
Bi Bi
Xem chi tiết
tthnew
15 tháng 2 2020 lúc 7:00

1/ Ta có: \(1999^{30}\equiv\left(1999^2\right)^{15}\equiv8^{15}\equiv\left(8^3\right)^5\equiv16^5\equiv1\left(mod31\right)\)

\(\Rightarrow\left(1999^{30}\right)^{66}\equiv1\left(mod31\right)\Leftrightarrow1999^{1980}\equiv1\left(mod31\right)\) (1)

Lại có: \(1999^{21}\equiv\left(1999^2\right)^{10}.1999\equiv8^{10}.15\equiv\left(8^5\right)^2.15\equiv15\left(mod31\right)\) (2)

Từ (1) và (2) \(\Rightarrow1999^{1980}.1999^{21}\equiv15\Leftrightarrow1999^{2001}\equiv15\left(mod31\right)\)

Hay \(1999^{2001}\) chia cho 31 có số dư là 15.

P/s: Cả năm nay không làm dạng này nên không chắc nha! Lục nghề mất r

Khách vãng lai đã xóa
tthnew
15 tháng 2 2020 lúc 7:40

2) Khó đây, không chắc đâu. Mình thử dùng quy nạp:

Trước hết ta chứng minh nó với n = 1. Tức là chứng minh \(1924^{2003^{2004}}+1920⋮124\)

\(\Leftrightarrow1924^{2003^{2004}}+1920\equiv0\left(mod124\right)\)

Tách: 124 =4 . 31

Ta có: \(1924\equiv0\left(mod4\right)\Leftrightarrow1924^{2003^{2004}}\equiv0\left(mod4\right)\)

Lại có: \(1924^{30}\equiv1\left(mod31\right)\) (bạn tự chứng minh được mà:D)

Mà: \(2003^{2004}\equiv23^{2004}\equiv19^{1002}\equiv\left(19^2\right)^{501}\equiv1\left(mod30\right)\)

Đặt \(2003^{2004}=30k+1\). Do đó \(1924^{2003^{2004}}=1924^{30k+1}=\left(1924^{30}\right)^k.1924\equiv1.1924\equiv2\left(mod31\right)\)

\(\Rightarrow1924^{2003^{2004}}-2\equiv0\left(mod31\right)\)

\(\Rightarrow1924^{2003^{2004}}-2-31.2\equiv0\left(mod31\right)\)

\(\Rightarrow1924^{2003^{2004}}-64\equiv0\left(mod31\right)\)

\(1924^{2003^{2004}}-64\equiv0\left(mod4\right)\)

Suy ra \(1924^{2003^{2004}}-64\equiv0\left(mod4.31=124\right)\)

Do đó: \(1924^{2003^{2004}}+1920\equiv64+1920\equiv0\left(mod124\right)\)

Vậy nó đúng trong trường hợp n = 1. Ta giả sử nó đúng đến n = k.

Tức là: \(1924^{2003^{2004^k}}+1920⋮124\)

Ta đi chứng minh: \(1924^{2003^{2004^{k+1}}}+1920⋮124\)

Tới đây bí cmnr:(

Khách vãng lai đã xóa
Người ẩn danh
17 tháng 12 2022 lúc 23:00

b) Tách 124= 4.31

- Tìm dư khi chia 1924^2003^2004^n + 1920 cho 4

Có 1924 đồng dư 0 (mod4)

=> 1924^2003^2004^n đồng dư 0 (mod4)

1920 đồng dư 0 (mod4)

<=> 1924^2003^2004^n + 1920 đồng dư 0 (mod4)

- Tìm dư trong phép chia 1924^2003^2004^n + 1920 cho 31

*) Tìm dư: 1924^2003^2004^n cho 31

 Có 1924 đồng dư 2 (mod31)

Mà 2^5 đồng dư 1 (mod31)

=> 1924^5 đồng dư 1 (mod 31)

- Ta phải tìm dư trong phép chia 2003^2004^n cho 5

   2003 đồng dư 3 (mod5)

Mà 3^4 đồng dư 1 (mod5)

=> 2003^4 đồng dư 1 (mod 5)

- Ta phải tìm dư trong phép chia 2004^n cho 4

2004 đồng dư 0 (mod 4)

=> 2004^ n đồng dư 0 (mod4)

=> 2004^n = 4k

=> 2003^2004^n = 2003^4k đồng dư 1 (mod 5)

=> 2003^2004^n = 5k + 1

=> 1924^2003^2004^n = 1924^5k+1 = 1924^5k . 1924 đồng dư 2 (mod31)

1920 đồng dư 29 (mod31)

=> 1924^2003^2004^n + 1929 đồng dư 2 + 29 đồng dư 31 đồng dư 0 (mod31)

- Vì    1924^2003^2004^n + 1920 chia hết cho 4

        và 1924^2003^2004^n + 1920 chia hết cho 31

=> 1924^2003^2004^n + 1920 chia hết cho 4.31 chia hết cho 124

Vậy....

Kirigaya Kazuto
Xem chi tiết
Yuuki Asuna
19 tháng 11 2016 lúc 15:40

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

Nguyễn Đăng Nhân
Xem chi tiết

Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3

Trong biểu thức không hề chứa \(x\) em nhá

Biểu thức chứa \(x\) là biểu thức nào thế em?

Lê Song Phương
16 tháng 9 2023 lúc 19:10

Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.

Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)

Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\) 

Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)

Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)

 

Hoàng Trung Thành
Xem chi tiết
Nguyễn Bá Huy h
Xem chi tiết