Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)
\(A=2n+\left(...6\right)+\left(...1\right)\)
Ta có : 2n là số chẵn
\(2012^{2013}\) là số chẵn
\(2013^{2012}\) là số lẻ
\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ
Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ
=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )