Tính giới hạn của dãy số \(u_n=q+2q^2+3q^3+...+nq^n\) với \(\left|q\right|< 1\)
Tìm giới hạn của dãy số \(\left(u_n\right)\) với :
a) \(u_n=\dfrac{\left(-1\right)^n}{n^2+1}\)
b) \(u_n=\dfrac{2^n-n}{3^n+1}\)
cho dãy số \(\left(u_n\right)\) được xác định như sau: \(\hept{\begin{cases}u_1=u_2=1\\u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}},\end{cases}\left(n\ge2,n\in N\right)}\)
Chứng minh dãy \(\left(u_n\right)\)có giới hạn hữu hạn. Tính giới hạn đó.
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2u_n+3}{u_n+2},\left(n\ge1\right)\end{matrix}\right.\)
a) Chứng minh rằng \(u_n>0\) với mọi \(n\)
b) Biết \(\left(u_n\right)\) có giới hạn hữu hạn. Tìm giới hạn đó ?
Biết \(\left|u_n-2\right|\le\dfrac{1}{3^n}\). Có kết luận gì về giới hạn của dãy số \(\left(u_n\right)\) ?
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 - \frac{2}{{{n^2}}}.\) Tính các giới hạn sau:
a) \(\lim {u_n},\lim {v_n}.\)
b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} - {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)
a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 - \frac{2}{{{n^2}}}} \right) = \lim 5 - \lim \frac{2}{{{n^2}}} = 5 - 0 = 5\end{array}\)
b)
\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 5 = - 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)
Cho biết dãy số \(\left(u_n\right)\) có giới hạn hữu hạn, còn dãy số \(\left(v_n\right)\) không có giới hạn hữu hạn. Dãy số \(\left(u_n+v_n\right)\) có thể có giới hạn không ?
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Biết \(\left|u_n-2\right|\le v_n\) với mọi n và \(\lim\limits v_n=0\). Có kết luận gì về giới hạn của dãy số \(\left(u_n\right)\) ?
+ Với mọi n ∈ N*, ta có:
|un – 2| ≤ vn ⇔ -vn ≤ un – 2 ≤ vn
+ Mà lim (-vn) = lim (vn) = 0 nên
lim (un – 2) = 0 ⇔ lim un – lim 2 = 0 ⇔ lim un = 2
cho dãy số \(\left(u_n\right)\) được xác định như sau: \(\hept{\begin{cases}u_1=u_2=1\\u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}},\end{cases}\left(n\ge2,n\in N\right)}\)
Chứng minh dãy \(\left(u_n\right)\)có giới hạn hữu hạn. Tính giới hạn đó.
Cho dãy số (\(u_n\)) xác định bởi công thức truy hồi :
\(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2};n\ge1\end{matrix}\right.\)
Chứng minh rằng \(\left(u_n\right)\) có giới hạn hữu hạn khi \(n\rightarrow+\infty\)
Tìm giới hạn đó ?