Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Thùy
Xem chi tiết
D-low_Beatbox
18 tháng 3 2021 lúc 20:29

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 20:31

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Lê Quang Thiên
Xem chi tiết
Lê Ng Hải Anh
18 tháng 7 2018 lúc 9:32

1)3x(x-2)=7(x-2)

<=>3x(x-2)-7(x-2)=0

<=>(x-2)(3x-7)=0

x-2=0=>x=2

3x-7=0=>x=7/3

cn lại lm tg tự

Lê Ng Hải Anh
18 tháng 7 2018 lúc 16:38

10)\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}\)

Lê Ng Hải Anh
19 tháng 7 2018 lúc 9:16

16) \(\left(x^2+x\right)\left(x^2+x+1\right)=6\)

\(\Leftrightarrow x^4+x^3+x^2+x^3+x^2+x=6\)

\(\Leftrightarrow x^4+2x^3+2x^2+x-6=0\)

\(\Leftrightarrow x^4+2x^3+2x^2+4x-3x-6=0\)

\(\Leftrightarrow x^3\left(x+2\right)+2x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+2x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+\frac{1}{4}x-x+\frac{11}{4}x-\frac{11}{4}-\frac{1}{4}+x^2-x^2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-x^2\right)+\left(x^2-x\right)+\left(\frac{1}{4}x-\frac{1}{4}\right)+\left(\frac{11}{4}x-\frac{11}{4}\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+x\left(x-1\right)+\frac{1}{4}\left(x-1\right)+\frac{11}{4}\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+\frac{1}{4}+\frac{11}{4}\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right]=0\)

\(\Leftrightarrow\hept{\begin{cases}x+2=0\\x-1=0\\\left(x+\frac{1}{2}\right)^2+\frac{11}{4}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=1\\\left(x+\frac{1}{2}\right)^2+\frac{11}{4}=0->ktm\end{cases}}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\)=>ko thỏa mãn(đây là giải thích cho phần trên)

6)\(\left(x-6\right)\left(x+4\right)=2\left(x+1\right)\)

\(\Leftrightarrow x^2+4x-6x-24-2x-2=0\)

\(\Leftrightarrow x^2-4x-26=0\)

đến đây nếu phân tích tam thức bậc hai này thì tìm đc x là số thập phân vô hạn ko tuần hoàn nên mk nghĩ là đề bài câu này sai

gianhi586
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
24 tháng 2 2020 lúc 20:51

\(4+2x\left(2x+4\right)=-x\)

\(4+2x.2x+8x=-x\)

\(4x+8x+x=-4\)

\(13x=-4\)

\(x=-\frac{4}{13}\)

 Vậy pt có nghiệm là { -4/13 }

Khách vãng lai đã xóa
IS
24 tháng 2 2020 lúc 20:54

2) mình nghĩ thế này

(2x-3)^2=2x-3

Đẻ 2 cái trên = nhau thfi 

2x-3=1

=> x=2

Khách vãng lai đã xóa
manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 19:51

a: ĐKXĐ: x-5>=0

=>x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x-1>=0

=>x>=1

\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

=>\(-2\sqrt{x-1}=4\)

=>\(\sqrt{x-1}=-2\)(vô lý)

Vậy: Phương trình vô nghiệm

c: ĐKXĐ: x-2>=0

=>x>=2

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)

=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)

=>\(-\sqrt{x-2}=-4\)

=>x-2=16

=>x=18(nhận)

d: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)

=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)

=>\(4\sqrt{x+3}=0\)

=>x+3=0

=>x=-3(nhận)

Nhật Văn
15 tháng 10 2023 lúc 19:50

a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left|x-5\right|=4\)

=> \(x-5=\pm4\)

\(x=\pm4+5\)

\(x=9;x=1\)

Vậy x=9; x=1

Nhật Văn
15 tháng 10 2023 lúc 19:53

b) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

\(-2\sqrt{x-1}=4\)

\(\sqrt{x-1}=-2\)

=>\(\left|x-1\right|=-2\)

\(x-1=\mp2\)

\(x=-3;x=1\)

Vậy x=-3; x=1

Nguyễn Đức Nhân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2020 lúc 10:55

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

Khách vãng lai đã xóa
tranthuylinh
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 10 2021 lúc 11:03

\(d,ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=9\left(tm\right)\end{matrix}\right.\\ e,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+\dfrac{3}{2}\cdot2\sqrt{x-1}-\dfrac{2}{5}\cdot5\sqrt{x-1}=4\\ \Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\\ \Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\\ f,ĐK:x\ge5\\ PT\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\\ \Leftrightarrow2\sqrt{x-5}=6\Leftrightarrow\sqrt{x-5}=3\\ \Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Huỳnh Như Huệ
Xem chi tiết